收藏 分享(赏)

基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx

上传人:a**** 文档编号:958341 上传时间:2025-12-19 格式:DOCX 页数:27 大小:441.73KB
下载 相关 举报
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第1页
第1页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第2页
第2页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第3页
第3页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第4页
第4页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第5页
第5页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第6页
第6页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第7页
第7页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第8页
第8页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第9页
第9页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第10页
第10页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第11页
第11页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第12页
第12页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第13页
第13页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第14页
第14页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第15页
第15页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第16页
第16页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第17页
第17页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第18页
第18页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第19页
第19页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第20页
第20页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第21页
第21页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第22页
第22页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第23页
第23页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第24页
第24页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第25页
第25页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第26页
第26页 / 共27页
基础强化人教版九年级数学上册第二十二章二次函数必考点解析试题(详解).docx_第27页
第27页 / 共27页
亲,该文档总共27页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则

2、a的取值范围是()ABCD2、对于抛物线,下列说法正确的是()A抛物线开口向上B当时,y随x增大而减小C函数最小值为2D顶点坐标为(1,2)3、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD4、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定5、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx226、已知抛物线yax2+bx+c(a

3、0)如图所示,那么a、b、c的取值范围是()Aa0、b0、c0Ba0、b0、c0Ca0、b0、c0Da0、b0、c07、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D18、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD9、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大10、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1

4、,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _2、抛物线与轴交于两点,分别是,则的值为_3、抛物线沿着轴正方向看,在轴的左侧部分是_(填“上升”或“下降”)4、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_5、已知二次函数,当x_时,y取得最小值三、解答题(5小题,每小题10分,共计50分)1、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件

5、;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润2、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?3、如图,抛物线的顶点为A(h,

6、1),与y轴交于点B,点F(2,1)为其对称轴上的一个定点(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PFd;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标4、如图,抛物线y=a(x1)(x3)(a0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使OCAOBC(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在

7、一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由5、已知抛物线(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点,在抛物线上,若,求m的取值范围-参考答案-一、单选题1、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开

8、口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质2、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、

9、抛物线顶点坐标为(-1,-2),选项不符合题意故选:B【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题3、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次函数的性质是解本题的关

10、键4、B【解析】【分析】分别求出和的值即可得到答案【详解】解:点(1,y1),(2,y2)都在函数yx2的图象上,故选B【考点】本题主要考查了二次函数图像上点的坐标特征,正确求出和是解题的关键5、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)

11、抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键6、D【解析】【分析】根据开口方向可判断a的符号,根据对称轴可判断b的符号,根据图像与y轴的交点可判断c的符号.【详解】解:由图象开口可知:a0;由图象与y轴交点可知:c0;由对称轴可知:0,b0;a0,b0,c0,故选:D【考点】本题考查二次函数的

12、图像与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中考常考题型7、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数的关系是解题关键8、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及

13、当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数

14、的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上9、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这

15、个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键10、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对

16、称性求出与x轴的另一个交点坐标二、填空题1、#【解析】【分析】过点M作MDBC,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,MBD30,MDBC,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的关键2、2【解析】【分析】根据根与系数的关系解答即可【详解】解:抛物线y=a

17、x2-2ax-3与x轴交于两点,分别是(m,0),(n,0),故答案是:2【考点】考查了抛物线与x轴的交点,解题时,利用了抛物线解析式与一元二次方程间的转化关系以及根与系数的关系求得答案3、上升【解析】【分析】根据二次函数的增减性即可解答【详解】解:当x0时,y随x的增大而增大在轴的左侧部分是上升的故填:上升【考点】本题主要考查二次函数的增减性,灵活运用二次函数的性质成为解答本题的关键4、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当y1y2时

18、,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度5、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法三、解答题1、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销

19、售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【考点】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值2、(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意

20、列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,

21、a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【考点】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式3、(1);(2)见解析;(3),【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可(2)由题意P(m,),求出d2,PF2(用m表示)即可解决问题(3)如图,过点Q作QH直线l于H,过点D作DN直线l于N因为DFQ的周长=DF+DQ+FQ,DF是定值=,推出DQ+QF的值最小时,DFQ的周长最小,再

22、根据垂线段最短解决问题即可【详解】解:(1)设抛物线的函数解析式为由题意,抛物线的顶点为又抛物线与轴交于点抛物线的函数解析式为(2)证明:P(m,n),P(m,),F(2,1),d2=PF2,PF=d(3)如图,过点Q作QH直线l于H,过点D作DN直线l于NDFQ的周长=DF+DQ+FQ,DF是定值=,DQ+QF的值最小时,DFQ的周长最小,QF=QH,DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,DQ+QH的最小值为6,DFQ的周长的最小值为,此时Q(4,-)【考点】本题属于二次函数综合题,考查了待定系数法,两点间距离

23、公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题4、(1)OC=;(2)y=x,抛物线解析式为y=x2x+2;(3)点P存在,坐标为(,)【解析】【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACP

24、B面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可【详解】解:(1)由题可知当y=0时,a(x1)(x3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),OA=1,OB=3OCAOBC,OC:OB=OA:OC,OC2=OAOB=3,则OC=;(2)C是BM的中点,即OC为斜边BM的中线,OC=BC,点C的横坐标为,又OC=,点C在x轴下方,C(,),设直线BM的解析式为y=kx+b,把点B(3,0),C(,)代入得: ,解得:b=,k=,y=x,又点C(,)在抛物线上,代入抛物线解析式,解

25、得:a=,抛物线解析式为y=x2x+2;(3)点P存在,设点P坐标为(x,x2x+2),过点P作PQx轴交直线BM于点Q,则Q(x,x),PQ=x(x2x+2)=x2+3x3,当BCP面积最大时,四边形ABPC的面积最大,SBCP=PQ(3x)+PQ(x)=PQ=x2+x,当x=时,SBCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,)【考点】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键5、(1);(2)或;(3)当a0时,;当a0时,或【解析】【分析】(1)将二次函

26、数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到的取值范围【详解】(1),其对称轴为:(2)由(1)知抛物线的顶点坐标为:,抛物线顶点在轴上,解得:或,当时,其解析式为:,当时,其解析式为:,综上,二次函数解析式为:或(3)由(1)知,抛物线的对称轴为,关于的对称点为,当a0时,若,则-1m3;当a0时,若,则m-1或m3.【考点】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1