收藏 分享(赏)

基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx

上传人:a**** 文档编号:958305 上传时间:2025-12-19 格式:DOCX 页数:29 大小:733.98KB
下载 相关 举报
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第1页
第1页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第2页
第2页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第3页
第3页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第4页
第4页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第5页
第5页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第6页
第6页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第7页
第7页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第8页
第8页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第9页
第9页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第10页
第10页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第11页
第11页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第12页
第12页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第13页
第13页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第14页
第14页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第15页
第15页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第16页
第16页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第17页
第17页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第18页
第18页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第19页
第19页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第20页
第20页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第21页
第21页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第22页
第22页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第23页
第23页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第24页
第24页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第25页
第25页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第26页
第26页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第27页
第27页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第28页
第28页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题攻克试题(详解版).docx_第29页
第29页 / 共29页
亲,该文档总共29页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线经过点、,且与y轴交于点,则当时,y的值为()ABCD52、如图,正方形四个顶点的坐标依次为(1,1),

2、(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()ABCD3、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则4、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关5、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的

3、函数表达式各不相同,其中的值最大为()ABCD6、二次函数yx2+bx的对称轴为直线x2,若关于x的一元二次方程x2+bxt0(t为实数)在1x6的范围内有解,则t的取值范围是()A5t12B4t5C4t5D4t127、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个8、抛物线经过,对称轴直线,关于的方程在的范围有实数根,则的范围()ABCD9、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cCy=8xDy=x2(1+x)10、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及

4、其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是二次函数yax2+bx+c的部分图象,由图象可知,满足不等式ax2+bx+c0的x的取值范围是_2、已知二次函数中,函数y与自变量x的部分对应值如表:x01234y1052125,两点都在该函数的图象上,若,则m的值为_3、对于任意实数,抛物线与轴都有公共点则的取值范围是_4、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x

5、1,则当y0时,x的取值范围是_5、已知抛物线y=x2+2x3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,函数的图象记为,函数的图象记为,其中为常数,且,图象,合起来得到的图象记为(1)若图象有最低点,且最低点到轴距离为3,求的值;(2)若时,点在图象上,且,求的取值范围;(3)若点、的坐标分别为,连结当线段与图象恰有三个公共点时,请直接写出的取值范围2、已知抛物线经过点(1,2),(2,

6、13)(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值3、已知抛物线C:yax24(m1)x3m26m2(1)当a1,m0时,求抛物线C与x轴的交点个数;(2)当m0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m0时,过点(m,m22m2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t2,且点A在第三象限以线段AB为直径作圆,设该圆的面积为S,求S的取值范围4、已知,如图,二次函数的图象与轴交于A,两点,与轴交于点,且经过点(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴(3)求的面积,写出时的取值

7、范围5、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值-参考答案-一、单选题1、A【解析】【分析】先利用待定系数法求出抛物线解析式,再求函数值即可【详解】解:抛物线经过点、,且与y轴交于点,解方程组得,抛物线解析式为,当时,故选择A【考点】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键2、A【解析】【分析】求出抛物线经过两个特殊点时的a的值即可解决问题【详解】解:当抛物线经过(1,3)时,a=3,当抛物线

8、经过(3,1)时,a=,观察图象可知a3,故选:A【考点】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键4、D【解析】【分析】分别求出

9、函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键5、A【解析】【分析】分四种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式

10、为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键6、D【解析】【分析】根据对称轴方程可得b=-4,可得二次函数解析式,可得顶点坐标为(2,-4),关于x的一元二次方程x2+bxt0的解为二次函数yx24x与直线yt的交点的横坐标,当1x6时,4t12,进而求解;【详解】对称轴为直线x2,b4,二次函数解析式为yx24x,顶点坐标为(2,-4),1x6,当x=-1时,y=5,

11、当x=6时,y=12,二次函数y的取值范围为4t12,关于x的一元二次方程x2+bxt0的解为yx24x与直线yt的交点的横坐标,4t12,故选:D【考点】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键7、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴

12、,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点8、C【解析】【分析】由题意先得出抛物线的解析式,进而利用根的判别式以及二次函数图象的性质进行分析计算即可【详解】解:抛

13、物线经过,将代入可得,对称轴直线,解得,抛物线为,关于的方程在的范围有实数根,解得,且同时满足当,以及当,解得(舍去),或者当,以及当,解得,综上可得的范围为:故选:C【考点】本题考查二次函数与一元二次方程的结合,熟练掌握二次函数图象的性质并运用数形结合思维分析是解题的关键9、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的

14、定义是解题关键,注意a是不等于零的常数10、D【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般二、填空题1、x5或x-1【解析】【分析】根据二次函数的对称性求出函数图象与x轴的另一交点,再写出函数图象在x轴上方部分的x的取值范围即可【详解】解:由图可知,二次函数图象为直线x=2,所以,函数图象与x轴的另一交点为(-1,0),所以

15、,ax2+bx+c0时x的取值范围是x5或x-1故答案为:x5或x-1【考点】本题考查了二次函数与不等式,此类题目一般都利用数形结合的思想求解,本题求出函数图象与x轴的另一个交点是解题的关键2、1【解析】【分析】根据表中的对应值得到x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以,是抛物线上的对称点,则,然后解方程即可【详解】解:x=1时,y=2;x=3时,y=2,抛物线的对称轴为直线x=2,两点都在该函数的图象上,y1=y2,点,是抛物线上的对称点,解得:故答案为:1【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式3、【解析】

16、【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键4、3x1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y

17、0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键5、2或8【解析】【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB求解即可【详解】解:如图,当点C在点B左侧时,B,C是线段AD的三等分点,AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x3=0,解得:x1=1,x2=3,A(3,0),B(1,0),AB=3+1=4,AC=BC=2,m=2;当点C

18、在点B右侧时,AB=BC=CD=4,m=AB+BC=4+4=8;故答案为:2或8【考点】本题考查了抛物线与x轴的交点、抛物线的平移及解一元二次方程等知识,属于常考题型,利用数形结合的思想和三等分点的定义解决问题是关键三、解答题1、(1);(2);(3)或【解析】【分析】(1)先将函数化为顶点式,根据图象有最低点,且最低点到轴距离为3,可得,即可求解;(2)根据题意可得 , ,然后分两种情况:当时和当时,进行讨论,即可求解;(3)根据题意可得直线PQ为 ,然后分两种情况:当 时和当 时,并结合图象,进行分类讨论,即可求解【详解】解:,图象有最低点,最低点到轴距离为3, ,最低点到轴距离为3, ,

19、解得:;(2)当时, , ,当时,点A在函数图象 上,且当 时,函数随着x的增大而减小,当 时,当 时,此时 ;当时,点A在图象 上,函数,的对称轴为 ,当时, 最小为-5,当 时,当 时,此时 ,综上所述,的取值范围为;(3)点、的坐标分别为,直线PQ为 ,当 时,如图:函数的顶点为 ,若PQ经过图象M1的顶点 ,则 ,即 ,对于图象M2,有,解得: , (舍去), ,直线PQ与图象M2的交点在点P的右侧,线段与图象恰有三个公共点,由题意得:M1与y轴交于 ,解得: ;当 时,如图:函数的顶点为 ,若PQ经过图象M2的顶点 ,则 ,即 ,对于图象M1,时,解得: , (舍去), ,直线PQ与

20、图象M1的交点在点Q的左侧,此时线段与图象只有一个公共点,不符合题意;若线段PQ过M2与y轴的交点时,有 ,解得: ,对于图象M1,解得: ,(舍去) ,此时线段PQ与图象M有三个交点,符合题意,综上所述,当线段与图象恰有三个公共点时, 的取值范围为或【考点】本题主要考查了二次函数与性质,一元一次不等式组,一元二次方程的解法,利用数形结合思想和分类讨论的思想是解题的关键2、(1);(2)【解析】【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;(2)将(5,),(m,)代入解析式,联立即可求得m的值.【详解】(1)抛物线经过点(1,-2),(-2,13),解得,a的值为1,b的值为-4

21、;(2)(5,),(m,)是抛物线上不同的两点,解得或(舍去)m的值为-1.【考点】本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.3、(1)2个;(2)不能,见解析;(3)S5【解析】【分析】(1)由题意可知当a1,m0时,抛物线的表达式为:yx2+4x+2,80,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则0,且+20,即可求解;(3)由题意可知抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+1时,mt+3,点B(t+2,t2+4t+

22、3);点A在第三象限,即t0且t210,AB222+(4t+4)216(t+1)2+4,即可求解【详解】解:(1)当a1,m0时,抛物线的表达式为:yx2+4x+2,42-412=80,故C与x轴的交点个数为2个;(2)当m0时,判断抛物线C的顶点为:(,+2),假设点C在第四象限,则0,且+20,解得:0且1,故a无解,故顶点不能落在第四象限;(3)将点(m,m22m+2)代入抛物线表达式并整理得:(a2)m20,m0,故a2;则抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+2时,mt+3,

23、点B(t+2,t2+4t+3);而点A在第三象限,即t0且t210,解得:1t0;yByA4t+40,故点B在点A的右上方,AB222+(4t+4)216(t+1)2+4,1t0时,4AB220;S()2,故S5【考点】本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式、圆的基本知识等,综合性强,弄清题意,正确运用相关知识是解题的关键4、(1);(2)顶点坐标是,对称轴是;(3)的面积为21,时,的取值范围是【解析】【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面

24、积公式和图像得出答案【详解】(1)二次函数的图象经过点、,解这个方程组,得,该二次函数的解析式是;(2),顶点坐标是;对称轴是;(3)二次函数的图象与轴交于,两点,解这个方程得:,即二次函数与轴的两个交点的坐标为,的面积由图像可得,当时,故时,的取值范围是【考点】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键5、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1