1、人教版九年级数学上册第二十三章旋转章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形是菱形,且,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,当取最小值时的长()AB3C1D22、
2、如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A12B16C20D243、有下列说法:平行四边形具有四边形的所有性质:平行四边形是中心对称图形:平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形其中正确说法的序号是()ABCD4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、下面四个手机应用图标中是轴对称图形的是()ABCD6、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2)以点P
3、为旋转中心,把点A按逆时针方向旋转60,得点B在,四个点中,直线PB经过的点是()ABCD7、如图,由个小正方形组成的田字格,的顶点都是小正方形的顶点,在田字格上能画出与成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A2个B3个C4个D5个8、以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()ABCD9、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D510、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把ABC绕点C顺时针旋转25,得到ABC,
4、AB交AC于点D,若ADC90,则A度数为_2、如图,已知菱形ABCD的边长为2,A45,将菱形ABCD绕点A旋转45,得到菱形,其中B、C、D的对应点分别是,那么点的距离为_3、在ABC中,点在边上,若,则的长为_4、如图,将矩形绕点逆时针旋转,连接,当为_时5、如图,正方形的边长为4,点E是对角线上的动点(点E不与A,C重合),连接交于点F,线段绕点F逆时针旋转得到线段,连接下列结论:;若四边形的面积是正方形面积的一半,则的长为;其中正确的是_(填写所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,D 是 的边 延长线上一点,连接 ,把 绕点 顺时针旋转 60恰好
5、得到 ,其中,是对应点,若 ,求 的度数2、如图1,D为等边ABC内一点,将线段AD绕点A逆时针旋转60得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F(1)求证:BDCE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:BFCAFBAFE小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由3、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明4、如图,点P是正方形ABCD内部的一点,APB90,将RtAPB绕点A逆时针方
6、向旋转90得到ADQ,QD、BP的延长线相交于点E(1)判断四边形APEQ的形状,并说明理由;(2)若正方形ABCD的边长为10,DE2,求BE的长5、已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P(1)求证:AC=CD;(2)若BAC=2MPC,请你判断F与MCD的数量关系,并说明理由-参考答案-一、单选题1、D【解析】【分析】根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长【详解】解:如图:将ABG绕点B逆时针旋转60得到EBF,BE=A
7、B=BC,BF=BG,EF=AG,BFG是等边三角形,BF=BG=FG,AG+BG+CG=EF+FG+CG,根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长,过E点作EHBC交CB的延长线于H,如上图所示:EBH=60,EH=3,EC=2EH=6,CBE=120,BEF=30,EBF=ABG=30,,故选:D【考点】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键2、A【解析】【分析】根据点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.【详解】解: 如图设圆心为O,连接OA, OB,点
8、E落在圆上的点E处.AB=OA=OB,OAB=,同理OAE=,EAB=,EAO=EAB-OAB=,EAE=OAE-EAO=-=点E旋转的角度和点C旋转的角度相等,点C旋转的角度为,故选A.【考点】本题主要考查旋转的性质,注意与圆的性质的综合.3、D【解析】【分析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可【详解】解:平行四边形是四边形的一种,平行四边形具有四边形的所有性质,故正确:平行四边形绕其对角线的交点旋转180度能够与自身重合,平行四边形是中心对称图形,故正确:四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=CBAADCCBA(SAS)同理可以
9、证明ABDCDB平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故正确;四边形ABCD是平行四边形,OA=OC,OD=OB,平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故正确故选D【考点】本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解4、D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可【详解】解:A、是中心对称图形,但不是轴对称图形,不符合题意;B、是轴对称图像,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D
10、、是轴对称图形,也是中心对称图形,符合题意;故选:D【考点】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握以上知识是解题的关键5、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【考点】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质
11、的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键6、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为:y=kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,
12、M2(-,-1)在直线PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键7、C【解析】【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找【详解】分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则ABM、ANB、EHF、EFC都是符合题意的三角形.故选:C.【考点】考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,不要漏解.8、A【解
13、析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意故选A【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心
14、对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键9、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律10、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图
15、形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键二、填空题1、65【解析】【分析】根据旋转的性质,可得知,从而求得的度数,又因为的对应角是,即可求出的度数【详解】绕着点时针旋转,得到,的对应角是故答案为:【考点】此题考查了旋转的性质,解题的关键是正确确定对应角2、【解析】【分析】首先由菱形的性质可知,由旋转的性质可知:,从而可证明为直角三角形,然后由勾股定理即可求得的长度【详解】解:如图所示:四边形ABCD为菱形,由旋转的性质可知:,在中,故答案为:【考点】本题主要考查的是旋转的性质和菱形的性质以及勾股定理
16、的应用,证得为直角三角形是解题的关键3、【解析】【分析】将CE绕点C顺时针旋转90得到CG,连接GB,GF,可得ACEBCG,从而得FG2AE2BF2,再证明ECFGCF,从而得EF2AE2BF2,进而即可求解【详解】解:将CE绕点C顺时针旋转90得到CG,连接GB,GF,BCEECABCGBCE90ACEBCG在ACE与BCG中,ACEBCG(SAS),ACBG45,AEBG,FBGFBCCBG90在RtFBG中,FBG90,FG2BG2BF2AE2BF2又ECF45,FCGECGECF45ECF在ECF与GCF中,ECFGCF(SAS)EFGF,EF2AE2BF2,BF=,故答案是:【考点
17、】本题主要考查全等三角形的判定和性质以及旋转变换,二次根式的化简,通过旋转变换,构造全等三角形,是解题的关键4、60【解析】【分析】连接,过作于,交于,根据等腰三角形的性质与判定得,进而得到垂直平分,证得为等边三角形便可【详解】解:连接,过作于,交于,如下图,要使,则,四边形和四边形都是矩形,垂直平分,由旋转性质知,是等边三角形,故当为时,故答案为:【考点】本题主要考查了矩形的性质,旋转的性质,等边三角形的性质与判定,关键是证明垂直平分5、【解析】【分析】过E作EMBC,ENCD,可证BEMFEN得BE=EF,故正确;可证四边形BEFG是正方形得EBG=90,BE=BG,可证ABE=CBG,进
18、而得到ABECBG,所以BAE=BCG,得BCA+BCG=90,即ACG=90,可证正确;由可求BE=,过E作EHAB,则AEH=180-BAC-AHE=45,知AH=HE,设AH=HE=x,则BH=4-x,由,得到AH=HE=2,从而得到,知错误;由可知,ABECBG,所以AE=CG,而CG+CE=AE+CE=AC可求,正确【详解】解:过E作EMBC,ENCD四边形ABCD是正方形,AC平分BCDEM=ENEMC=MCN=ENC=90MEN=90EFBEBEM+MEF=FEN+MEF=90BEM=FENEMB=ENF=90,EM=ENBEMFENBE=EF故正确;BEF=EFG=90,EF=
19、FG,BE=EFBE=FG,BEFG四边形BEFG是平行四边形BEF=90,BE=EF四边形BEFG是正方形EBG=90,BE=BGABC=90ABE+EBC=EBC+CBG=90ABE=CBG又AB=BC,BE=BGABECBGBAE=BCGBAE+BCA=90BCA+BCG=90,即ACG=90故正确; BE= 过E作EHAB四边形ABCD是正方形BAC=45AHE=90AEH=180-BAC-AHE=45AH=HE设AH=HE=x,则BH=4-x 解得 AH=HE=2 故错误;由可知,ABECBGAE=CGCG+CE=AE+CE=ACACB=45AC= CG+CE= 故正确,所以答案为:
20、【考点】本题是正方形综合题,主要考查了旋转的性质,正方形的判定与性质,角平分线的性质,勾股定理,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质,综合运用正方形的判定与性质定理,勾股定理等知识是解题的关键三、解答题1、42【解析】【分析】根据旋转的性质得到,再根据计算解题即可【详解】解:把绕点A顺时针旋转60恰好得到, ,故答案为:【考点】本题考查旋转、角的和差等知识,是基础考点,掌握相关知识是解题关键2、(1)见解析;(3)正确,见解析【解析】【分析】(1)根据旋转的性质可得ADAE,DAE60,结合已知条件可得BACDAE,进而证明ABDACE,即可证明BDCE;(2)过A作BD,C
21、F的垂线段分别交于点M,N,ABDACE,BDCE,由面积相等可得AMAN,证明RtAFMRtAFN,进而证明BFCAFBAFE60【详解】解:证明:(1)如图1,线段AD绕点A逆时针旋转60得到AE,ADAE,DAE60,BAC60,BACDAE,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,(2)由(1)可知ABDACE则ABDACE,又AGBCGF,BFCBAC60,BFE120,过A作BD,CF的垂线段分别交于点M,N,又ABDACE,BDCE,由面积相等可得AMAN,在RtAFM和RtAFN中,RtAFMRtAFN(HL),AFMAFN,BFCAFBAFE60【
22、考点】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的关键3、(1)20;(2);(3)AF= CF+BF,理由见解析【解析】【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则A
23、F=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+A
24、CD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【考点】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键4、 (1)正方形,见解析(2)14【解析】【分析】(1)利用旋转即可得到,再根据全等三角形的性质即可求证四边形APEQ的形状(2)设,则,利用勾股定理可求出,进而可求出BE的长(1)解:四边形APEQ是正方形,理由如下:RtAPB绕点
25、A逆时针方向旋转90得到ADQ,在四边形APEQ中,四边形APEQ为矩形,矩形APEQ是正方形(2)设则由(1)以及题意可知:,在中,即,解得(负值舍去),【考点】本题考查正方形的性质、旋转的性质以及勾股定理,熟练掌握正方形基本性质以及旋转性质是解题的关键5、见解析【解析】【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案【详解】(1)证明:ABM与ACM关于直线AF成轴对称,ABMACM,AB=AC,又ABE与DCE关于点E成中心对称,ABEDCE,AB=CD,AC=CD;(2)F=MCD.理由:由(1)可得BAE=CAE=CDE,CMA=BMA,BAC=2MPC,BMA=PMF,设MPC=,则BAE=CAE=CDE=,设BMA=,则PMF=CMA=,F=CPMPMF=,MCD=CDEDMC=,F=MCD.【考点】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.