1、九年级数学上册第二十一章一元二次方程难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16
2、D12或162、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2个D1个或2个3、已知抛物线yax2bxc(ay2By1y2Cy1y2D不能确定4、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()ABC且D5、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或46、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)7、若|x24x+4|与互为
3、相反数,则x+y的值为()A3B4C6D98、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x29、x=是下列哪个一元二次方程的根()A3x2+5x+1=0B3x25x+1=0C3x25x1=0D3x2+5x1=010、关于的方程(、为常数,)的解是,则方程的解是().A,B,C,D,第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_2、方程的根是_3、方程(m1)x|m|+14x+3=0是一元二次方程,则m满足的条件是
4、:_,此方程的二次项系数为:_,一次项系数为:_,常数项为:_4、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_5、已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为_三、解答题(5小题,每小题10分,共计50分)1、解方程: (1);(2)(3)2、解方程:3、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克
5、)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?4、用适当的方法解下列方程:(1)x2x10;(2)3x(x2)x2;(3)x22x10;(4)(x8)(x1)125、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,
6、求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元-参考答案-一、单选题1、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:
7、D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键2、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.3、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,
8、故选A【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键4、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由方程有两个不相等的实数根,得出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求5、A【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m
9、的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键6、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为
10、1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键7、A【解析】【详解】根据题意得:|x24x+4|+=0,所以|x24x+4|=0,=0,即(x2)2=0,2xy3=0,所以x=2,y=1,所以x+y=3故选A8、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意;这里a=2,b=
11、-3,c=-5,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,是解题的关键9、D【解析】【分析】根据一元二次方程的求根公式进行求解.【详解】一元二次方程的求根公式是,对四个选项一一代入求根公式,正确的是D.所以答案选D.【考点】本题的解题关键是掌握一元二次方程求根公式.10、D【解析】【分析】先用直接开平方法解出,然后再解出,对比两个解的关系,即可得到答案.【详解】解:,解得:,解得:,故选择:D.【考点】本题考查了一元二次方程的解,解题的关键是掌握正确解出一元二次方程的解二、填空题1、2【解析】【分析】根据
12、一元二次方程的解的定义把x2代入得到得 然后利用整体代入的方法进行计算【详解】2是关于x的一元二次方程的一个根,nm2,故答案为2【考点】本题考查了一元二次方程的解,掌握方程的解的定义是解决本题的关键.2、【解析】【分析】根据题意得出配方得出,开方得出:,即可求解得出根【详解】解:配方得出,故答案为:【考点】本题考查了运用配方法求解二次方程的根的问题,难度很小,很容易做出,本题属于基础题3、 m=1 2 4 3【解析】【分析】根据一元二次方程的定义解答即可【详解】解:根据题意得,|m|+1=2且m10,解得m=1或1且m1,所以,m=1,m1=11=2,所以,此方程为,所以,此方程的二次项系数
13、为2,一次项系数为4,常数项为3故答案为:m=1;2,4,3【考点】本题考查了一元二次方程的一般形式是:(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中叫二次项,叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项4、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,
14、根据等量关系式列方程.5、1【解析】【分析】利用整体的思想以及根与系数的关系即可求出答案【详解】解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,at2+bt+1=0,由题意可知:t1=1,t2=2,t1+t2=3,x3+x4+2=3故答案为1【考点】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型三、解答题1、(1);(2);(3)【解析】【分析】(1)根据直接开平方法解方程;(2)利用配方法解方程;(3)根据分式方程的步骤化简为整式方程,再解一元二次方程【详解】(1)解得(2)解得:(3)去分母得:解得:当时,当时,原方程的根为【
15、考点】本题考查了解一元二次方程,解分式方程,掌握解方程的方法是解题的关键2、【解析】【分析】将原方程整理,移项,令,然后解关于t的一元二次方程,获得t的值,代回原方程即可求解【详解】移项,整理得:令,原式变为解得,(舍去),即解得,故答案为 ,【考点】本题考查了换元法解一元二次方程,问题的关键是令,然后解关于t的一元二次方程,一定要注意舍去不合理的根3、(1)yx+150(0x90);(2)70【解析】【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式(2)根据想获得4000元的利润,列出方程求解即可【详解】(1)设y与x的函数关系式为ykx+b(k
16、0),根据题意得,解得故y与x的函数关系式为yx+150(0x90);(2)根据题意得(x+150)(x20)4000,解得x170,x210090(不合题意,舍去)答:该批发商若想获得4000元的利润,应将售价定为70元【考点】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出方程4、 (1),(2)x1,x22(3)x1,x2(4)x14,x25【解析】【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解(1)解: a
17、1,b1,c1b24ac(1)241(1)5x即原方程的根为x1,x2(2)解:移项,得3x(x2)(x2)0,即(3x1)(x2)0,x1,x22(3)解:配方,得(x)21,x1x11,x21(4)解:原方程可化为x29x200,即(x4)(x5)0,x14,x25【考点】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键5、 (1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利销售的千克数总利润,列出方程解答
18、即可;(3)利用每天总毛利润税费人工费水电房租费每天总纯利润,列出方程解答即可(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x10时,y600,当x11时,y60020580,由题意得,解得所以销量y与盈利x元之间的关系为y20x+800,当x17时,y460,则每天的毛利润为174607820元;(2)解:设每千克盈利x元,由(1)可得销量为(20x+800)千克,由题意得x(20x+800)7500,解得:x125,x215,要使得顾客得到实惠,应选x15,每千克应涨价15105元;(3)解:设每千克盈利x元,由题意得x(20x+800)10%x(20x+800)1.5(20x+800)3006000,解得:x125,x2,则每千克应涨价251015元或10元【考点】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键