收藏 分享(赏)

基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx

上传人:a**** 文档编号:957730 上传时间:2025-12-19 格式:DOCX 页数:24 大小:575.17KB
下载 相关 举报
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第1页
第1页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第2页
第2页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第3页
第3页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第4页
第4页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第5页
第5页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第6页
第6页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第7页
第7页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第8页
第8页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第9页
第9页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第10页
第10页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第11页
第11页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第12页
第12页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第13页
第13页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第14页
第14页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第15页
第15页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第16页
第16页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第17页
第17页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第18页
第18页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第19页
第19页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第20页
第20页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第21页
第21页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第22页
第22页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第23页
第23页 / 共24页
基础强化京改版八年级数学上册第十二章三角形定向测评试题(含答案及解析).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九章算术中记载:今有户不知高、广,竿不知长、短横之不出四尺,从之不出二尺,斜之适出问户高、广、斜各几何?译文是:今

2、有门,不知其高、宽,有竿,不知其长、短横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()ABCD2、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D423、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:ACEBCD;DABACE;AE+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个4、如图,在中,连接BC,CD,则的度数是()A45B50C55D805、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD6、如图

3、,在中,则的长为()ABCD7、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1208、如图,在中,的周长10,和的平分线交于点,过点作分别交、于、,则的长为()A10B6C4D不确定9、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D410、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A第卷(非选择题 70分)二、

4、填空题(5小题,每小题4分,共计20分)1、边长为6的等边三角形的面积是_2、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_3、如图,点在的边的延长线上,点在边上,连接交于点,若,则_4、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_5、如图,在和中,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,已知是边上的中线,是上一点,且,延长交于点,求证:2、在中,在的外部作等边三角形,E为的中点,连接并延长交于点

5、F,连接(1)如图1,若,求和的度数;(2)如图2,的平分线交于点M,交于点N,连接补全图2;若,求证:3、如图,在中,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G求的周长4、如图,在ABC中,CDAB于点D,若AC=,CD=5,BC=13,求ABC的面积5、已知a,b,c分别为的三边,且满足,(1)求c的取值范围;(2)若的周长为12,求c的值-参考答案-一、单选题1、B【解析】【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长【详解】解:根据勾股定理可得:x2=(x-4)2+(x-2)2,故选:

6、B【考点】本题考查了勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般2、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键3、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角

7、性质得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACEBCD,在ACE和BCD中,ACEBCD(SAS),所以正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确

8、故选:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键4、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型5、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O

9、处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,故选:D【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键6、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,B

10、C=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长7、B【解析】【分析】先证BAECAD,得出B=C,再证CFB=BAC=90即可【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数8、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB和EO=EC,从

11、而得出DE=DBEC,然后根据的周长即可求出AB.【详解】解:OBC=DOBBO平分OBC=DBODOB=DBODO = DB同理可证:EO=ECDE=DOEO= DBEC,的周长10,ADAEDE=10ADAEDBEC =10ABAC=10AB=10AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.9、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错

12、误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键10、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题1、【解析】【分

13、析】作出相应图形中,作,由三线合一性质解得DC=3,继而根据勾股定解得AD的长,最后根据三角形面积公式解题【详解】如图,在中,作,故答案为:【考点】本题考查等边三角形的性质、三线合一性质、勾股定理、三角形面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键2、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键3、102【解析】

14、【分析】首先根据DFC3B117,可以算出B39,然后设CDx,根据外角与内角的关系可得39xx117,再解方程即可得到x39,再根据三角形内角和定理求出BED的度数【详解】解:DFC3B117,B39,设CDx,39xx117,解得:x39,D39,BED1803939102故答案为:102【考点】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和4、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:

15、长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.5、130【解析】【分析】证明ABCADC即可【详解】,AC=AC,ABCADC,D=B=130,故答案为:130【考点】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键三、解答题1、证明见解析【解析】【分析】延长AD到点G,使得,连接,结合D是BC的中点,易证ADC和GDB全等,利用全等三角形性质以及等量代换,得到AEF中的两个角相

16、等,再根据等角对等边证得AE=EF.【详解】如图,延长到点,延长AD到点G,使得,连接是边上的中线,在和中,(对顶角相等),(SAS),又,即【考点】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.2、(1),;(2)作图见解析;见解析【解析】【分析】(1)结合等腰三角形和等边三角形的性质,可得ABD=ADB,从而求解出角度后,再计算BDF即可;(2)根据尺规作图作角平分线的方法画出的平分线即可;设ACM=BCM=,由AB=AC,推出ABC=ACB=2,可得NAC=NCA=,DAN=60+,由ABNADN(SSS),推出ABN=ADN=30,BAN=DAN=60+,

17、BAC=60+2,在ABC中,根据BAC+ACB+ABC=180,构建方程求出,再证明MNB=MBN即可解决问题【详解】(1),为等边三角形,又E为的中点,由“三线合一”知,;(2)如图所示:利用尺规作图的方法得到CP,交于点M,交于点N;如图所示,连接,平分,设,在等边三角形中,为的中点,在和中,在中,【考点】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用各类图形的性质进行综合分析3、10【解析】【分析】根据线段垂直平分线的性质可得,据此即可求解【详解】解:是的垂直平分线,是的垂直平分线,的周长【考点】此题主要考查了线段垂直平分线的性质等

18、几何知识,线段垂直平分线上的点到线段两端点的距离相等4、【解析】【分析】由于CDAB,CD为RtADC和RtBCD的公共边,在这两个三角形中利用勾股定理可求出AD和BD的长,然后根据三角形面积公式求得即可【详解】解:CDAB,CDA=BDC=90在RtADC中,AD2=AC2CD2,在RtBCD中,BD2=BC2CD2,AC= ,CD=5,BC=13,AD=3,BD=12,AB=15,SABC=ABCD=.【考点】本题考查了勾股定理的运用,根据勾股定理求得AB的长是解题的关键5、 (1)2c6(2)3.5【解析】【分析】(1)根据三角形任意两边之和大于第三边得出3c-2c,任意两边之差小于第三边得出|2c-6|c,列不等式组求解即可;(2)由ABC的周长为12,a+b=3c-2,4c-2=12,解方程得出答案即可(1)a,b,c分别为ABC的三边,a+b=3c-2,a-b=2c-6, ,解得:2c6故c的取值范围为2c6;(2)ABC的周长为12,a+b=3c-2,a+b+c=4c-2=12,解得c=3.5故c的值是3.5【考点】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1