1、八年级数学上册第十一章实数和二次根式综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若代数式+|b1|+c2+a在实数范围内有意义,则此代数式的最小值为()A0B5C4D52、等于()A7BC1D
2、3、下列各数中,与1最接近的是()A0.4B0.6C0.8D14、下列各式是最简二次根式的是()ABCD5、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A1B-1C2D-26、下列四个数中,最大的有理数是()A-1B-2019CD07、下列二次根式中,是最简二次根式的是ABCD8、下列实数:3,0,0.35,其中最小的实数是()A3B0CD0.359、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定10、下列各数:-2,0,0.020020002,其中无理数的个数是()A4B3C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
3、1、已知为实数,规定运算:,按上述方法计算:当时,的值等于_2、计算:=_3、阅读材料:若ab=N,则b=logaN,称b为以a为底N的对数,例如23=8,则log28=log223=3根据材料填空:log39=_4、若a1,化简_5、+_三、解答题(5小题,每小题10分,共计50分)1、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量某种型号的汽车的撞击影响可以用公式I2v2来表示,其中v(千米/分)表示汽车的速度假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少(精确到0.1千米/分)2、实数a在数轴上的对应点A的位置如图所示,b|
4、a|2a|(1)求b的值;(2)已知b2的小数部分是m,8b的小数部分是n,求2m2n1的平方根3、阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+=x+y,其中x是整数,且0y1,求x-y的相反数.4、若a,b为实数,且,求3ab的值5、计算:(1)(2)-参考答案-一、单选题1、B【解析】【分析】利用二次根式、平方和绝对值的非负性,可知代数式的最小值为,因为二次根
5、式有意义,因此5,即可求解.【详解】代数式,|b1|c2a在实数范围内有意义,则a50,|b1|0,c20,所以代数式,|b1|c2a的最小值是,5,故选:B【考点】二次根式、绝对值、偶次方(平方考查最多)都具有非负性,二次根式有意义的条件是被开方数0.2、B【解析】【分析】根据二次根式的混合计算法则求解即可【详解】解:,故选B【考点】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则3、C【解析】【分析】先估算接近的数,再减去1即可【详解】1.51.740.510.74故选:C【考点】本题考查无理数的估值,理解算术平方根的概念是关键,了解二分法是难点4、A【解析】【分析
6、】根据最简二次根式的定义即可求出答案【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型5、B【解析】【分析】根据一个正数的两个平方根互为相反数得到关于a的一元一次方程,求解即可【详解】解:根据题意可得:,解得,故选:B【考点】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a的值是关键6、D【解析】【分析】根据有理数大小比较判断即可;【详解】已知选项中有理数大小为,故答案选D【考点】
7、本题主要考查了有理数比大小,准确判断是解题的关键7、B【解析】【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解【详解】A、不是最简二次根式,错误,不符合题意;B、是最简二次根式,正确,符合题意;C、不是最简二次根式,错误,不符合题意;D、不是最简二次根式,错误,不符合题意,故选B【考点】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式8、C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【详解】解:根据实数比较大小的方法,可得00.353,所以最小的实数是,
8、故选:C【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小9、A【解析】【详解】根据二次根式的性质可得:+,因为,所以原式=,故选A.10、C【解析】【详解】分析:根据无理数与有理数的概念进行判断即可得.详解:是有理数,0是有理数,是有理数,0.020020002是无理数,是无理数,是有理数,所以无理数有2个,故选C.点睛:本题考查了无理数定义,初中范围内学习的无理数有三类:类,如2,3等;开方开不尽的数,如,等;虽有规律但是无限不循环的数,如0.1010010001,等.二、填空题1、【解析】【分析】将,代入进行计算,可知数列
9、3个为一次循环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,找到规律是解题的关键2、3【解析】【分析】先计算负整数指数幂和算术平方根,再计算加减即可求解【详解】原式523,故答案为:3【考点】此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键3、2【解析】【详解】分析:由于32=9,利用对数的定义计算详解:32=9,log39=log332=2故答案为2点睛:属于定义新运算题目,读懂材料中对数的定义是解题的关键.4、a【解析】【分析】根据a的范围,a10,
10、化简二次根式即可【详解】解:a1,a10,|a1|1(a1)1a11a故答案为:a【点评】本题考查了二次根式的性质与化简,对于的化简,应先将其转化为绝对值形式,再去绝对值符号,即5、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:(3)2+927故答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的运算三、解答题1、5.0【解析】【分析】由I=2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得,继而求得答案【详解】由题意
11、知2v251,v2,所以v5.0(千米/分)该车撞击时的车速是5.0千米/分【考点】此题考查了算术平方根的应用注意理解题意是解此题的关键2、 (1)(2)【解析】【分析】(1)先判断2a3,再判断a-0,2a0,再化简绝对值,合并即可;(2)先求解 再求解的值,再求解2m2n1,最后求解平方根即可(1)解:2a3a-0,2a0b-aa-22(2)b2=,8b=8(2)=10, m=3,n=106=42m2n1=26+821=32m2n1的平方根为【考点】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键3、-12【解析】【分析】本题主要考查
12、了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方法,估计的大小,易得10+的范围,进而可得xy的值;再由相反数的求法,易得答案【详解】解:12,1+1010+2+10,1110+12,x=11,y=10+-11=-1,x-y=11-(-1)=12-,x-y的相反数-124、2【解析】【分析】根据题意可得,解方程组可得a,b,再代入求值.【详解】解:,解得,3ab=64=2故3ab的值是2【考点】本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.5、 (1)(2)【解析】【分析】(1)去括号,化简绝对值,求得算术平方根,再按顺序进行计算即可;(2)按顺序先求得立方根、去括号、根据实数的乘法法则计算,然后再进行加减运算即可;(1)解:,2,原式=;(2)解:原式=【考点】本题考查了实数的混合运算,掌握相关运算法则是解题关键