1、江苏省泰兴中学高二数学讲义(32)应用导数研究函数的性质(2)【学习目标】1.会抓住切点及导数求函数的切线;2.初步掌握应用导数研究函数单调性的类型与方法;3.初步掌握应用导数研究函数极值与最值的类型与方法;4.培养“函数与方程”、“分类讨论”、“数形结合”的数学思想.【填空题训练】1. 若曲线C1:y3x4ax36x2与曲线C2:yex在x1处的切线互相垂直,则实数a的值为_2.曲线f(x)exf(0)xx2在点(1,f(1)处的切线方程为_3.函数yexlnx的值域为_4.已知函数f(x)lnx2x,若f(x22)f(3x),则实数x的取值范围是_5.已知函数f(x)lnx(mR)在区间1
2、,e上取得最小值4,则m_.【解答题训练】1.已知函数f(x)x33ax(aR),函数g(x)lnx.(1)当a1时,求函数f(x)在区间2,2上的最小值;(2)若在区间1,2上函数f(x)的图像恒在g(x)的图像的上方(没有公共点),求实数a的取值范围.2.若函数yf(x)已知a,b是实数,1和1是函数f(x)x3ax2bx的两个极值点(1)求a和b的值;(2)设函数g(x)的导函数g(x)f(x)2,求函数g(x)的极值点.3.已知函数f(x)2x2, g(x)lnxb.(1)当b0时,求函数h(x)f(x)g(x)的极值;(2)若b是正整数,且g(x)axf(x)对任意的x(0,)恒成立
3、,试求b的值及a的取值范围江苏省泰兴中学高二数学课后作业(32)班级: 姓名: 学号: 1.已知曲线f(x)xsinx1在点处的切线与直线axy10互相垂直,则实数a_.2.若曲线C1:y3x4ax36x2与曲线C2:yex在x1处的切线互相垂直,则实数a的值为_3.设函数f(x)x2lnx,若曲线yf(x)在点(1,f(1)处的切线方程为yaxb,则ab= 4.在平面直角坐标系xOy中,点P(0,1)在曲线C:yx3x2axb(a,b为实数)上,已知曲线C在点P处的切线方程为y2x1,则ab_.5.已知函数f(x)mx3nx2的图像在点(1,2)处的切线恰好与直线3xy0平行,若f(x)在区间t,t1上单调递减,则实数t的取值范围是_6.已知函数f(x)(m3)x39x.(1)若函数f(x)在区间(,)上是单调函数,求实数m的取值范围;(2)若函数f(x)在区间1,2上的最大值为4,求实数m的值7.已知函数f(x)ax(x0且x1)(1)若函数f(x)在(1,)上为减函数,求实数a的最小值;(2)若x1,x2e,e2,使f(x1)f(x2)a成立,求实数a的取值范围8.已知函数f(x)xalnx (aR)(1)讨论函数yf(x)的单调区间;(2)设g(x)x22bx4ln2,当a1时,若对任意的x1,x21,e(e为自然对数的底数),f(x1)g(x2),求实数b的取值范围