1、七年级数学上册第三章整式及其加减专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列是按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是(
2、)A(1)nxn+nyB1nxn+nyC(1)n+1xn+nyD(1)nxn+(1)nny2、化简的结果是()ABCD3、用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm4、给定一列按规律排列的数: ,则这列数的第9个数是()ABCD5、若ab5,cd1,则(bc)(da)的值是()A6B6C4D46、下列去括号正确的是()ABCD7、已知与的和是单项式,则等于()AB10C12D158、下列各选项中,不是同类项的是()A和B和C6和D和9、观察如图所示的程序
3、,若输入x为2,则输出的结果为()A0B3C4D510、代数式的正确解释是()A与的倒数的差的平方B与的差的平方的倒数C的平方与的差的倒数D的平方与的倒数的差第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在代数式,12,中,单项式有_个2、计算的结果等于_3、已知一列数2,8,26,80,按此规律,则第n个数是_(用含n的代数式表示)4、如果单项式与的和仍是单项式,那么_5、任写一个二次单项式:_.三、解答题(5小题,每小题10分,共计50分)1、数学课上,小明同学提出一个观点“一个两位数与它的10倍的和一定能被11整除”你同意他的观点吗?请结合你学过的知识说明理由2
4、、2022年北京冬奥会开幕式主火炬台由96块小雪花形态和6块橄榄枝构成的巨型“雪花”形态,在数学上,我们可以通过“分形”近似地得到雪花的形状操作:将一个边长为1的等边三角形(如图)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图,称为第一次分形接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图),称为第二次分形不断重复这样的过程,就得到了“科赫雪花曲线”(1)【规律总结】每一次分形后,得到的“雪花曲线”的边数是前一个“雪花曲线”边数的 倍;每一次分形后,三角形的边长都变为原来的
5、倍;(2)【问题解决】试猜想第n次分形后所得图形的边数是 ;周长为 (用含n的代数式表示)3、在长方形纸片中,边长,(,),将两张边长分别为8和6的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影的面积为,图2中阴影部分的面积为(1)请用含的式子表示图1中,的长;(2)请用含,的式子表示图1,图2中的,若,请问的值为多少?4、如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求
6、正方形的边长5、分别写出下列各项的系数与次数(1);(2);(3);(4)-参考答案-一、单选题1、A【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可【详解】解:按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是:(1)nxn+ny,故选:A【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键2、B【解析】【分析】根据去括号法则,先去小括号,再去中括号,然后去大括号,即可求解【详解】解:故选:B【考点】本题主要考查了去括号,熟练掌握去括号法则:括号前面是“+”号,去掉括号和括号前面
7、的“+”号,括号里的各项都不改变符号;括号前面是“-”号,去掉括号和括号前面的“-”号,括号里的各项都改变符号是解题的关键3、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详解】原正方形的周长为acm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选:B【考点】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式4、B【解析】【分析】把数列变,分别观察分子和分母的规律即可解决问题【详解】解:把数列变,可知分子是从2
8、开始的连续偶数,分母是从2开始的连续自然数,则第n个数为所以这列数的第9个数是,故选:B【考点】本题考查了数字类规律探索,将原式整理为,分别得出分子分母的规律是解本题的关键5、A【解析】【分析】先去括号,将已知代数式的值代入,根据整式的加减计算即可求解【详解】解:ab5,cd1,(bc)(da)故选A【考点】本题考查了去括号,代数式求值,正确的去括号是解题的关键6、D【解析】【分析】根据去括号的法则逐项判断即可求解【详解】解:A、,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项错误,不符合题意;D、,故本选项正确,符合题意故选:D【考点】本题主要考查了去括号法则,熟练
9、掌握去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键7、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考查的是同类项的含义,一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.8、B【解析】【分析】根据同类项的概念求解即可同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】解:A、和是同类项,不符合题意;B
10、、和不是同类项,符合题意;C、6和是同类项,不符合题意;D、和是同类项,不符合题意 故选:B【考点】此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项9、B【解析】【分析】根据流程图所示顺序,代入计算即可得【详解】,故选:B【考点】本题考查了学生代数式求值问题及读图理解的能力,根据运算程序图求解是解题关键10、D【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】解:代数式的正确解释是的平方与的倒数的差.故选:D
11、.【考点】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序具体说法没有统一规定,以简明而不引起误会为出发点二、填空题1、3【解析】【分析】根据单项式的定义,进行逐一判断即可【详解】解:在,12,中,单项式有,12,一共3个,故答案为:3【考点】本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数2、【解析】【分析】根据合并同类项法则即可求解【详解】故答案为:【考点】本题考查了合并同类项法则,先判断两个单项式是不是同类项,然后按照法则
12、相加是解题关键3、3n1【解析】【详解】分析:根据观察等式,可发现规律,根据规律,可得答案详解:已知一列数2,8,26,80, 按此规律,则第n个数是 故答案为点睛:本题考查了数字的变化类,规律是第几个数就是3的几次方减14、4【解析】【分析】根据题意可知:单项式与单项式是同类项,然后根据同类项的定义即可求出m和n,从而求出结论【详解】解:单项式与单项式的和仍然是单项式,单项式与单项式是同类项,m=3,n=14故答案为:4【考点】此题考查的是求同类项的指数中的参数,掌握合并同类项法则和同类项的定义是解题关键5、答案不唯一,如:2xy【解析】【分析】根据单项式的定义,数与字母的积的形式的代数式是
13、单项式,所有字母的指数和叫做这个单项式的次数,这样符合条件的单项式有多个【详解】解:根据定义,只要字母的指数和为2即可,本题答案不唯一,如:2xy故答案为答案不唯一,如:2xy【考点】本题考查单项式的定义,确定单项式次数时,要记住所有字母的指数和叫做这个单项式的次数三、解答题1、我同意小明的观点,见解析【解析】【分析】先设一个两位数的个位上的数是,十位上的数是,则这个两位数可表示为;则这个两位数的10倍是;两式相加整理后正好是11的倍数,所以“一个两位数与它的10倍的和一定能被11整除”是正确的【详解】答:我同意小明的观点理由如下:假设一个两位数的个位上的数是,十位上的数是,则这个两位数是;这
14、个两位数的10倍是;他们的和是:;由于是整数,所以“一个两位数与它的10倍的和一定能被11整除”是正确的【考点】本题主要考查了整式加减的应用,熟练掌握整式的加减是解题的关键2、 (1)4;(2);【解析】【分析】(1)根据第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,可得答案;(2)由(1)可得第n次分形后所得图形的边数是,边长为,所以周长为(1)解:等边三角形的边数为3,边长为1,第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,每一次分形后,得到的“雪花曲线”的边数是前一
15、个“雪花曲线”边数的4倍;每一次分形后,三角形的边长都变为原来的倍故答案为:4;(2)解:第一次分形后,得到的“雪花曲线”的边数是12,边长是,第二次分形后,得到的“雪花曲线”的边数是48,边长是,所以第n次分形后所得图形的边数是,边长为,所以周长为故答案为:;【考点】此题考查图形的变化规律,解题关键是找出图形之间的联系,得出运算规律3、(1);(2)【解析】【分析】(1)根据图形中线段的数量关系可直接进行求解;(2)利用图形面积关系分别表示出,再利用整式的混合运算计算即可【详解】解:(1)由图形可得:,;(2)由图形可得:,若,则有:【考点】本题主要考查整式的加减运算,利用图形正确列出整式是
16、解题的关键4、(1)ab4x2(2)【解析】【分析】(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可【详解】解:(1)ab4x2(2)依题意有:,将a=6,b=4,代入上式,得x2=3解得x1=,x2=(舍去)正方形的边长为5、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:,次数:2;(4)系数:,次数:5【解析】【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可【详解】解:(1)的系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:,次数:2;(4)系数:,次数:5【考点】本题只要考查单项式的系数和次数的知识,根据其定义作答即可