收藏 分享(赏)

2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc

上传人:高**** 文档编号:929683 上传时间:2019-05-21 格式:DOC 页数:11 大小:953KB
下载 相关 举报
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第1页
第1页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第2页
第2页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第3页
第3页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第4页
第4页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第5页
第5页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第6页
第6页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第7页
第7页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第8页
第8页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第9页
第9页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第10页
第10页 / 共11页
2013高三数学大一轮复习学案:随机变量及其分布列.版块二.几类典型的随机分布4.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、正态分布知识内容1 离散型随机变量及其分布列离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量来表示,并且是随着试验的结果的不同而变化的,我们把这样的变量叫做一个随机变量随机变量常用大写字母表示如果随机变量的所有可能的取值都能一一列举出来,则称为离散型随机变量离散型随机变量的分布列将离散型随机变量所有可能的取值与该取值对应的概率列表表示:我们称这个表为离散型随机变量的概率分布,或称为离散型随机变量的分布列2几类典型的随机分布两点分布如果随机变量的分布列为其中,则称离散型随机变量服从参数为的二点分布二点分布举例:某次抽查活动中,一件产品合格记为,不合格记为,已知产品的合格率为,随机变量

2、为任意抽取一件产品得到的结果,则的分布列满足二点分布两点分布又称分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布超几何分布一般地,设有总数为件的两类物品,其中一类有件,从所有物品中任取件,这件中所含这类物品件数是一个离散型随机变量,它取值为时的概率为,为和中较小的一个我们称离散型随机变量的这种形式的概率分布为超几何分布,也称服从参数为,的超几何分布在超几何分布中,只要知道,和,就可以根据公式求出取不同值时的概率,从而列出的分布列二项分布1独立重复试验如果每次试验,只考虑有两个可能的结果及,并且事件发生的概率相同在相同的条件下,重复地做次试验,各次试验的结果相互独

3、立,那么一般就称它们为次独立重复试验次独立重复试验中,事件恰好发生次的概率为2二项分布若将事件发生的次数设为,事件不发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率是,其中于是得到的分布列由于表中的第二行恰好是二项展开式各对应项的值,所以称这样的散型随机变量服从参数为,的二项分布,记作二项分布的均值与方差:若离散型随机变量服从参数为和的二项分布,则,正态分布1 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线在随机变量中,如果把样本中的任一数据看作随机变量,则这条曲线称为的概率密度曲线曲线位于横轴的上方,它与横轴一起所围成的面积是,而随机变量

4、落在指定的两个数之间的概率就是对应的曲边梯形的面积2正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布服从正态分布的随机变量叫做正态随机变量,简称正态变量正态变量概率密度曲线的函数表达式为,其中,是参数,且,式中的参数和分别为正态变量的数学期望和标准差期望为、标准差为的正态分布通常记作正态变量的概率密度函数的图象叫做正态曲线标准正态分布:我们把数学期望为,标准差为的正态分布叫做标准正态分布重要结论:正态变量在区间,内,取值的概率分别是,正态变量在内的取值的概率为,在区

5、间之外的取值的概率是,故正态变量的取值几乎都在距三倍标准差之内,这就是正态分布的原则若,为其概率密度函数,则称为概率分布函数,特别的,称为标准正态分布函数标准正态分布的值可以通过标准正态分布表查得分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可3离散型随机变量的期望与方差1离散型随机变量的数学期望定义:一般地,设一个离散型随机变量所有可能的取的值是,这些值对应的概率是,则,叫做这个离散型随机变量的均值或数学期望(简称期望)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平2离散型随机变量的方差一般地,设一个离散型随机变量所有可能取的值是,这些值对应的概率是,则叫做这个离散

6、型随机变量的方差离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度)的算术平方根叫做离散型随机变量的标准差,它也是一个衡量离散型随机变量波动大小的量3为随机变量,为常数,则;4 典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量的期望取值为,在次二点分布试验中,离散型随机变量的期望取值为二项分布:若离散型随机变量服从参数为和的二项分布,则,超几何分布:若离散型随机变量服从参数为的超几何分布,则,4事件的独立性如果事件是否发生对事件发生的概率没有影响,即,这时,我们称两个事件,相互独立,并把这两个事件叫做相互独立事件如果事件,相互独立,那么这个事件

7、都发生的概率,等于每个事件发生的概率的积,即,并且上式中任意多个事件换成其对立事件后等式仍成立5条件概率对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件概率,用符号“”来表示把由事件与的交(或积),记做(或)典例分析正态曲线(正态随机变量的概率密度曲线)【例1】 下列函数是正态分布密度函数的是( )A B C D【例2】 若正态分布密度函数,下列判断正确的是( )A有最大值,也有最小值 B有最大值,但没最小值 C有最大值,但没最大值 D无最大值和最小值【例3】 对于标准正态分布的概率密度函数,下列说法不正确的是( )A为偶函数 B最大值为C在时是单调减函数,在时是单调增函数

8、D关于对称【例4】 设的概率密度函数为,则下列结论错误的是( )A BC的渐近线是 D【例5】 设,且总体密度曲线的函数表达式为:,求;求及的值【例6】 某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为,则下列命题中不正确的是( )A该市这次考试的数学平均成绩为分B分数在120分以上的人数与分数在分以下的人数相同C分数在110分以上的人数与分数在分以下的人数相同D该市这次考试的数学标准差为正态分布的性质及概率计算【例7】 设随机变量服从正态分布,则下列结论正确的个数是【例8】 已知随机变量服从正态分布,则( )ABCD【例9】 在某项测量中,测量结果服从正态分布,若在内

9、取值的概率为,则在内取值的概率为 【例10】 已知随机变量服从正态分布,则( )A B C D【例11】 已知,若,则( )A B C D无法计算【例12】 设随机变量服从正态分布,若,则【例13】 设,且,则的值是(用表示)【例14】 正态变量,为常数,若,求的值【例15】 某种零件的尺寸服从正态分布,则不属于区间这个尺寸范围的零件约占总数的 【例16】 某校高中二年级期末考试的物理成绩服从正态分布若参加考试的学生有人,学生甲得分为分,求学生甲的物理成绩排名;若及格(分及其以上)的学生有人,求第名的物理成绩已知标准正态分布表【例17】 在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正

10、态分布已知成绩在分以上(含分)的学生有名试问此次参赛学生总数约为多少人?若该校计划奖励竞赛成绩排在前名的学生,试问设奖的分数线约为多少分?附:标准正态分布表正态分布的数学期望及方差【例18】 如果随机变量,求的值正态分布的原则【例19】 灯泡厂生产的白炽灯寿命(单位:),已知,要使灯泡的平均寿命为的概率为,则灯泡的最低使用寿命应控制在小时以上【例20】 一批电池(一节)用于手电筒的寿命服从均值为小时、标准差为小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于小时的概率是多少?【例21】 某班有名同学,一次考试后的数学成绩服从正态分布,平均分为,标准差为,理论上说在分到分的人

11、数是杂题(拓展相关:概率密度,分布函数及其他)【例22】 已知连续型随机变量的概率密度函数,求常数的值;求【例23】 已知连续型随机变量的概率密度函数,求的值及【例24】 设随机变量具有概率密度,求的值及【例25】 美军轰炸机向巴格达某铁路控制枢纽投弹,炸弹落弹点与铁路控制枢纽的距离的密度函数为,若炸弹落在目标40米以内时,将导致该铁路枢纽破坏,已知投弹颗,求巴格达铁路控制枢纽被破坏的概率【例26】 以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率等于( )A BC D【例27】 某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路程较短,但交通拥挤,所需时间(单位为分)服从正态分布;第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布若只有分钟可用,问应走哪条路线?若只有65分钟可用,又应走哪条路线?.高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3