1、等差数列的前n项和A级基础巩固一、选择题1已知等差数列an满足a2a44,a3a510,则它的前10项和S10(C)A138B135C95D23解析设等差数列an的首项为a1,公差为d.则,得2d6,d3.a2a4a1da13d2a14d2a1434,a14,S1010(4)34013595.故选C2(2018全国卷理,4)记Sn为等差数列an的前n项和若3S3S2S4,a12,则a5(B)A12B10C10D12解析32a1d4a1d9a19d6a17d3a12d062d0d3,所以a5a14d24(3)10.3若等差数列an的前三项和S39,且a11,则a2等于(A)A3B4C5D6解析S
2、33a1d9,且a11,d2,a2a1d3.4已知等差数列an前9项的和为27,则a108,则a100(C)A100B99C98D97解析设等差数列an的公差为d,因为an为等差数列,且S99a527,所以a53.又a108,解得5da10a55,所以d1,所以a100a595d98,选C5设Sn是等差数列an的前n项和,若,则(A)A1B1C2D解析1,故选A6(2017全国卷理,4)记Sn为等差数列an的前n项和若a4a524,S648,则an的公差为(C)A1B2C4D8解析设an的公差为d,则由,得,解得d4.故选C二、填空题7已知数列an中,a11,anan1(n2),则数列an的前
3、9项和等于 27 .解析n2时,anan1,且a11,a2a1,an是以1为首项,为公差的等差数列S99191827.8等差数列an前9项的和等于前4项的和若a11,aka40,则k 10 .解析本题考查等差数列通项公式、前n项和公式以及基本运算能力设等差数列公差为d,则an1(n1)d,S4S9,a5a6a7a8a90,a70,16d0,d.又a413(),ak1(k1)d,1(k1)d0,d代入,得k10.三、解答题9(2018全国卷理,17)记Sn为等差数列an的前n项和,已知a17,S315.(1)求an的通项公式;(2)求Sn,并求Sn的最小值解析(1)设等差数列an的公差为d,由题
4、意得3a13d15.由a17得d2.所以an的通项公式为an2n9.(2)由(1)得Snn28n(n4)216.所以当n4时,Sn取得最小值,最小值为16.10等差数列an中,a10,S9S12,则该数列前多少项的和最小?解析解法一:设等差数列an的公差为d,则由题意得9a198d12a11211d即3a130d,a110d,a10,Snna1n(n1)ddn2dn22d.d0,Sn有最小值又nN,n10或n11时,Sn取最小值解法二:同解法一,由S9S12,得.由,得.解得10n11.n取10或11时,Sn取最小值解法三:S9S12,a10a11a120,3a110,a110.a10”是“S
5、4S62S5”的(C)A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件解析方法1:数列an是公差为d的等差数列,S44a16d,S55a110d,S66a115d,S4S610a121d,2S510a120d.若d0,则21d20d,10a121d10a120d,即S4S62S5.若S4S62S5,则10a121d10a120d,即21d20d,d0.“d0”是“S4S62S5”的充分必要条件故选C方法2:S4S62S5S4S4a5a62(S4a5)a6a5a5da5d0,“d0”是“S4S62S5”的充分必要条件故选C3已知一个等差数列共n项,且其前四项之和为21,末四项
6、之和为67,前n项和为286,则项数n为(B)A24B26C25D28解析设该等差数列为an,由题意,得a1a2a3a421,anan1an2an367,又a1ana2an1a3an2a4an3,4(a1an)216788,a1an22.Sn11n286,n26.4等差数列an的前n项和为Sn,已知am1am1a0,S2m138,则m(C)A38B20C10D9解析由等差数列的性质,得am1am12am,2ama,由题意,得am0,am2.又S2m12(2m1)38,m10.二、填空题5已知等差数列an的前n项和为Sn,若a1a200,且A、B、C三点共线(该直线不过原点O),则S200 10
7、0 .解析a1a200,且A、B、C三点共线,a1a2001,S200100.6设等差数列an的前n项和为Sn,若S972,则a2a4a9 24 .解析S972,a1a916,即a1a18d16,a14d8,又a2a4a9a1da13da18d3(a14d)3824.三、解答题7(2019深圳耀华实验中学高二月考)在等差数列an中,Sn为该数列的前n项和(1)已知a511,a85,求an;(2)设an是公差为正数的等差数列若a1a2a315,a1a2a380,求a11a12a13.解析(1)设公差为d,由题意得,解得.ana1(n1)d192(n1)212n.(2)an是公差为正数的等差数列d0,a1a32a2,a1a2a315,a1a2a380,3a215,a25,a1a310,a1a316.则a1,a3是方程x210x160的两根,由x210x160得x12,x28,a3a1,a12,a38.d3,a11a12a133a123(a111d)3(2113)105.8设Sn是等差数列an的前n项和,已知S636,Sn324,若Sn6144(n6),求数列的项数n.解析由题意可知由,得(a1an)(a2an1)(a6an5)216,6(a1an)216,a1an36.Sn18n324,n18.