1、11.2离散型随机变量及其分布列、均值与方差组基础题组1.如果随机变量B(n,p),且E=7,D=6,则p等于()A.B.C.D.2.设随机变量B(2,p),B(4,p),若P(1)=,则P(2)的值为()A.B.C.D.3.(2015赣州摸底)要从由n名成员组成的小组中任意选派3人去参加某次社会调查.若在男生甲被选中的情况下,女生乙也被选中的概率为0.4,则n的值为()A.4B.5C.6D.74.(2015乌鲁木齐二诊)一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数为,则的
2、期望值为()A.B.C.1D.25.随机变量的概率分布列由下表给出:78910P0.30.350.20.15该随机变量的均值是.6.(2015福建,16,13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.7.(2015安徽,17,12分)已知2件次品和3件正品
3、混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).8.(2015山东,19,12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的
4、 “三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望EX.9.(2015西安第二次质检)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.10.(2014福建,18,13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,
5、规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获得的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获得的奖励额为60元的概率;(ii)顾客所获得的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获得的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.B组提升题组1.(2015安徽,6,5分)若样本数据x1
6、,x2,x10的标准差为8,则数据2x1-1,2x2-1,2x10-1的标准差为()A.8B.15C.16D.322.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.3.(2015山西质量监测)一枚质地均匀的正六面体骰子,六个面上分别刻着1点至6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是.4.(2015长沙一模)从正方体各表面的对角线中随机取两条,这两条表面对角线成的角的度数的数学期望为.5.(2015上海,12)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4
7、,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元),随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1和2分别表示赌客在一局赌博中的赌金和奖金,则E1-E2=(元).6.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望
8、.7.(2015江苏西亭中学模拟)某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.8.(2015云南师大附中适应性考试)甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为220万元的概率;(2)设总决赛中获得的门票总收入
9、为X,求X的分布列和数学期望E(X).9.(2015石家庄一模)现有甲、乙、丙三人参加某电视台的应聘节目非你莫属,若甲应聘成功的概率为,乙、丙应聘成功的概率均为(0t0,P(=2)-P(=0)=0,P(=2)-P(=3)=0,又0t2,t的取值范围是1t2,E,即E的取值范围为.10.解析(1)记事件A1=从甲箱中摸出的1个球是红球,A2=从乙箱中摸出的1个球是红球,B1=顾客抽奖1次获一等奖,B2=顾客抽奖1次获二等奖,C=顾客抽奖1次能获奖.由题意知,A1与A2相互独立,A1与A2互斥,B1与B2互斥,且B1=A1A2,B2=A1+A2,C=B1+B2.因为P(A1)=,P(A2)=,所以P(B1)=P(A1A2)=P(A1)P(A2)=,P(B2)=P(A1+A2)=P(A1)+P(A2)=P(A1)P()+P()P(A2)=P(A1)1-P(A2)+1-P(A1)P(A2)=+=.故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=+=.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以XB.于是P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.故X的分布列为X0123PX的数学期望为E(X)=3=.