1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评六十五随机事件的概率(20分钟40分)一、选择题(每小题5分,共30分)1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”【解析】选D.A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,
2、不是互斥关系;D中的两个事件是互斥而不对立的关系.【变式备选】 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.对立但不互斥事件C.互斥但不对立事件D.以上均不对【解析】选C.事件“甲分得红牌”与“乙分得红牌”是不可能同时发生的两个事件,这两个事件可能恰有一个发生、一个不发生,可能两个都不发生,所以这两个事件互斥但不对立,应选C.2.已知随机事件A,B发生的概率满足条件P(AB)=,某人猜测事件发生,则此人猜测正确的概率为()A.1B.C.D.0【解析】选C.因为事件与事件AB是对立事件,所以事件发生的概率为P()
3、=1-P(AB)=1-=,则此人猜测正确的概率为.3.下列结论正确的是()A.事件A的概率P(A)必满足0P(A)1B.事件A的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有一名胃溃疡病人服用此药,则估计有明显的疗效的可能性为76%D.某奖券中奖率为50%,则某人购买此奖券10张,一定有5张中奖【解析】选C.由概率的基本性质可知,事件A的概率P(A)满足0P(A)1,故A错误;必然事件的概率为1,故B错误;某奖券中奖率为50%,则某人购买此奖券10张,不一定有5张中奖,故D错误.4.已知随机事件A发生的概率是0.0
4、2,若事件A出现了10次,那么进行的试验次数约为()A.300B.400C.500D.600【解析】选C.设共进行了n次试验,则=0.02,解得n=500.5.从一箱产品中随机地抽取一件,设事件A=抽到一等品,事件B=抽到二等品,事件C=抽到三等品,且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.3【解析】选C.因为事件A=抽到一等品,且P(A)=0.65,所以事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.【变式备选】 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,
5、在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为()A.0.95B.0.97C.0.92D.0.08【解析】选C.记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.6.从1,2,3,4,5这5个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是世纪金榜导学号()A.B.C.D.【解析】选C.任取两数的所有
6、可能为两个奇数;一个奇数一个偶数;两个偶数,若是对立事件,则首先应该是互斥事件,分别判断每种情况:两个事件不是互斥事件;“至少有一个是奇数”包含“两个都是奇数”的情况,所以不互斥;“至少有一个是奇数”包含“两个奇数”和“一奇一偶”,所以与“两个偶数”恰好对立;“至少有一个是奇数”和“至少有一个是偶数”均包含“一奇一偶”的情况,所以不互斥.综上所述,只有正确.二、填空题(每小题5分,共10分)7.某城市2019年的空气质量状况如表所示:污染指数T3060100110130140概率P其中污染指数T50时,空气质量为优;50T100时,空气质量为良;100T150时,空气质量为轻微污染,则该城市2
7、019年空气质量达到良或优的概率为_.【解析】由题意可知2019年空气质量达到良或优的概率为P=+=.答案:8.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为_;至少取得一个红球的概率为_.世纪金榜导学号【解析】由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=+=.记事件A为“至少取得一个红球”,事件B为“取得两个绿球”,事件A与事件B是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=.答案:
8、(20分钟40分)1.(5分)从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是,则取到白球的概率等于()A.B.C.D.【解析】选C.因为取到红球与取到白球为对立事件,所以取到白球的概率P=1-=.2.(5分)甲、乙、丙三人站成一排照相,甲不排在左边的概率是()A.B.C.D.【解析】选A.甲、乙、丙三人站成一排照相的站法有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种,其中甲排在左边的站法为2种,所以甲排在左边的概率是=.所以甲不排在左边的概率为.3.(5分)若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,
9、则实数a的取值范围是()A.B.C.D.【解析】选D.由题意,可得即解得a.4.(12分)(2020绍兴模拟)下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).世纪金榜导学号空气质量指数污染程度小于100优良大于100且小于150轻度大于150且小于200中度大于200且小于300重度大于300且小于500严重大于500爆表(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达当日空气质量优良的概率.(3)求此人出差期间(两天)空气质量至少有一
10、天为中度或重度污染的概率.【解析】(1)从2月5日开始连续三天的空气质量指数方差最大.(2)设Ai表示事件“此人于2月i日到达该市”(i=1,2,13).根据题意,P(Ai)=,且AiAj=(ij,j=1,2,13).设B为事件“此人到达当日空气优良”,则B=A1A2A3A7A12A13.所以P(B)=P(A1A2A3A7A12A13)=.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,小于300”,由题意可知P(A)=P(A4A5A6A7A8A9A10A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P
11、(A9)+P(A10)+P(A11)=.5.(13分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期123456天气晴雨阴阴阴雨日期789101112天气阴晴晴晴阴晴日期131415161718天气晴晴晴晴阴雨日期192021222324天气阴阴晴阴晴晴日期252627282930天气晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率.世纪金榜导学号(2)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.【解题指南】(1)利用频率估计概率,即得所求.(2)利用前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,
12、由频率估计概率得值.【解析】(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是.(2)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等),这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14对,所以晴天的次日不下雨的频率为,以频率估计概率,运动会期间不下雨的概率为.【变式备选】 某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若xy3,则奖励玩具一个;若xy8,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率.(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【解题指南】用图表法能有效迅捷地解决“掷骰子”型概率问题.列出图表,基本事件总数,和各类试验结果一目了然.【解析】活动记录与xy的结果如表:显然,基本事件总数为16.(1)xy3情况有5种,所以小亮获得玩具的概率=.(2)xy8情况有6种,所以获得水杯的概率=,所以小亮获得饮料的概率=1-=,即小亮获得水杯的概率大于获得饮料的概率.关闭Word文档返回原板块- 10 - 版权所有高考资源网