1、八年级数学上册第十二章全等三角形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图给出了四组三角形,其中全等的三角形有()组 A1B2C3 D42、下列命题的逆命题一定成立的是()对顶角相等;同
2、位角相等,两直线平行;全等三角形的周长相等;能够完全重合的两个三角形全等ABCD3、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是()AABEDBACEFCACEFDBFDC4、如图,锐角ABC的两条高BD、CE相交于点O,且CEBD,若CBD20,则A的度数为()A20B40C60D705、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D16、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm7、如图,在ABC和DEF中,已知AB=DE,BC=E
3、F,根据(SAS)判定ABCDEF,还需的条件是()AA=DBB=ECC=FD以上三个均可以8、已知锐角,如图,(1)在射线上取点,分别以点为圆心,长为半径作弧,交射线于点,;(2)连接,交于点根据以上作图过程及所作图形,下列结论错误的是()ABC若,则D点在的平分线上9、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE10、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.5第卷(非选择题
4、70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,C=90,AD是ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_2、如图,ACB90,ACBC,BECE,ADCE,垂足分别为E,D,AD25,DE17,则BE_3、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_4、如图所示,中,直线l经过点A,过点B作于点E,过点C作于点F若,则_5、如图,平分,填空:因为平分,所以_从而_因此_三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,
5、AB=AD,AC平分BCD,AEBC于E,AFCD交CD的延长线于F(1)求证:ABEADF;(2)若BC=8cm,DF=3cm,求CD的长2、如图,若OADOBC,且O=65,BEA=135,求C的度数3、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN4、如图,在中,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F (1)如图,过点A的直线与斜边BC不相交时,求证:;(2)如图,其他条件不变,过点A的直线与斜边BC相交时,若,试求EF的长5、如图,在ABC中,ABAC ,ABAC,DE是过点
6、A的直线,BDDE于D,CEDE于点E;(1)若B、C在DE的同侧(如图1所示)求证:DEBDCE;(2)若B、C在DE的两侧(如图2所示),其他条件不变,则DE,BD,CE具有怎样的等量关系?写出等量关系,不需证明-参考答案-一、单选题1、D【解析】【详解】分析:根据全等三角形的判定解答即可详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等其中全等的三角形有4组,故选D点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中2、C【解析】【分析】求出各命题的逆命题
7、,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆命题的求法是解本题的关键3、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不
8、能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.4、B【解析】【分析】由BD、CE是高,可得BDC=CEB=90,可求BCD70,可证RtBECRtCDB(HL),得出BCDCBE70即可【详解】解:BD、CE是高,CBD20,BDC=CEB=90,BCD180902070,在RtBEC和RtCDB中,RtBECRtCDB(HL),BCDCBE70,A180707040故选:B【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判
9、定与性质,三角形内角和公式是解题关键5、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.6、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上
10、的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键7、B【解析】【分析】根据三角形全等的判定中的SAS,即两边夹角已知两条边相等,只需要它们的夹角相等即可【详解】要使两三角形全等,已知AB=DE,BC=EF,要用SAS判断,还差夹角,即B=E故选:B【考点】本题考查了三角形全等的判定方法三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主8、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明
11、即可证明结论B;连接OP,可证明可证明结论D;由此可知答案【详解】解:由题意可知,故选项A正确,不符合题意;在和中,在和中,故选项B正确,不符合题意;连接OP,在和中,点在的平分线上,故选项D正确,不符合题意;若,则,而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键9、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形
12、全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点10、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键二、填空题1、或【解析】【分析】作DEAB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC
13、,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可【详解】解:作DEAB于E,如图,AD是ABC的一条角平分线,DCAC,DEAB,DE=DC,设DE=DC=x,SABD=DEAB=ACBD,即10x=8(6-x),解得x=,即点D到AB边的距离为故答案为:【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键2、8【解析】【分析】可先证明BCECAD,可求得CEAD,结合条件可求得CD,则可求得BE【详解】解:ACB90,BCE+ACD90,又BECE,ADCE,EADC90,BCE+CBE90,CBE
14、ACD,在CBE和ACD中, ,CBEACD(AAS),BECD,CEAD25,DE17,CDCEDEADDE25178,BECD8;故答案为:8【考点】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键3、ED=FD(答案不唯一,E=CFD或DBE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答
15、案为:ED=FD(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键4、7【解析】【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:BEl,CFl,AEB=CFA=90EAB+EBA=90又BAC=90,EAB+CAF=90EBA=CAF在AEB和CFA中AEB=CFA,EBA=CAF,AB=AC,AEBCFAAE=CF,BE=AFAE+AF=BE+CFEF=BE+CF,;故答案为:7【考点】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等5
16、、 【解析】【分析】由AC平分DAB,12,可得出CAB2,由内错角相等可以得出两直线平行【详解】解:AC平分DAB,1CAB又12,CAB2,ABDC(内错角相等,两直线平行)故答案为:CAB,CAB,DC【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出CAB2解决该类题型只需牢牢掌握平行线的判定定理即可三、解答题1、 (1)证明见解析(2)2cm【解析】【分析】(1)由角平分线的性质可知,证明,进而结论得证;(2)由,可得,证明,则,根据,计算求解即可(1)证明:AC平分BCD,AEBC,AFCD,在和中,(2)解:,在和中,的长为2cm【考点】本题考查了角平分线的性
17、质,全等三角形的判定与性质等知识解题的关键在于找出三角形全等的条件2、35【解析】【分析】根据全等三角形对应角相等可得C=D,OBC=OAD,再根据三角形的内角和等于180表示出OBC,然后利用四边形的内角和等于360列方程求解即可【详解】C=D,OBC=OAD,O=65,OBC=18065C=115C,在四边形AOBE中,O+OBC+BEA+OAD=360,65+115C+135+115C=360,解得C=35.【考点】此题考查了全等三角形的性质和四边形的内角和等于360,熟练掌握这两个性质是解题的关键.3、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN
18、=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.4、(1)见详解;见详解;(2)7【解析】【分析】(1)由条件可求得EBAFAC,利用AAS可证明ABECAF;利用全等三角形的性质可得EAFC,EBFA,利用线段的和差可证得结论;(2)同(1)可证明
19、ABECAF,可证得EFFAEA,代入可求得EF的长【详解】(1)证明:BEEF,CFEF,AEBCFA90,EABEBA90,BAC90,EABFAC90,EBAFAC,在AEB与CFA中,ABECAF(AAS),ABECAF,EAFC,EBFA,EFAFAEBECF;(2)解:BEAF,CFAFAEBCFA90EABEBA90BAC90EABFAC90EBAFAC,在AEB与CFA中,ABECAF(AAS),EAFC,EBFA,EFFAEAEBFC1037【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等
20、三角形的对应边相等、对应角相等)是解题的关键5、 (1)见解析(2)DE=CE-BD【解析】【分析】(1)根据AAS证明ADBCEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出结论;(2)由条件可以得出ADB=CEA=90,BAD=ACE,再由AB=AC就可以得出ADBCEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD(1)ABAC , BDDE, CEDEBAC=90,ADB=AEC=90ACE+CAE=90,BAD+CAE=90,BAD=ACE,在ADC与BEC中,ADBAEC90, BADACE, AB=AC,ADBCEA(AAS),AD=CE,BD=AE,DE=AD+AE,DE=BD+CE;(2)DE=CE-BD理由:BDAD,CEAD,ADB=CEA=90ABAC , BAD+CAE=90CAE+ACE=90,BAD=ACE在ADB和CEA中,ADBCEA(AAS),BD=AE,AD=CEAD=AE+ED,DE=AD-AE=CE-BD【考点】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键