1、人教版八年级数学上册第十一章三角形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个正多边形的内角和为540,则这个正多边形的每一个外角等于()A108B90C72D602、如图,在ABC中有四
2、条线段DE,BE,EF,FG,其中有一条线段是ABC的中线,则该线段是()A线段DEB线段BEC线段EFD线段FG3、三角形的重心是()A三角形三边的高所在直线的交点B三角形的三条中线的交点C三角形的三条内角平分线的交点D三角形三边中垂线的交点4、如图,与没有公共边的三角形是( )ABCD5、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D546、如图,是的外角,若,则的度数为()ABCD7、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D18、能够铺满地面的正多边形组合是()A正三角形和正五边形B正方形
3、和正六边形C正方形和正八边形D正五边形和正十边形9、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D810、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()已知:如图,BECB+C求证:ABCD证明:延长BE交于点F,则BEC180FEC+C又BECB+C,得B故ABCD(相等,两直线平行)A代表FECB代表同位角C代表EFCD代表AB第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个多边形中,除其中一个内角外,其余内角的和为1105,则这个多边形的边数为_2、如果一个多边形的每个外角都是,那么这个多边形内
4、角和的度数为_3、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_4、如图,BE、CF是ABC的角平分线,BE、CF相交于点D,若,则CDE的度数为_5、从六边形的一个顶点出发,可以画出条对角线,它们将六边形分成个三角形边形没有对角线,则的值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,AC边上的中线BD把ABC的周长分成12cm和15cm两部分,求ABC各边的长2、如图所示,求的度数3、已知:如图,BE平分ABC,12求证:BC/DE4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边
5、,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式5、如图所示,AD,CE是ABC的两条高,AB6cm,BC12cm,CE9cm(1)求ABC的面积;(2)求AD的长-参考答案-一、单选题1、C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360,即可求得答案【详解】
6、解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,这个正多边形的每一个外角等于:=72故选C【考点】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180,外角和等于3602、B【解析】【详解】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知线段BE是ABC的中线,其余线段DE、EF、FG都不符合题意,故选B【考点】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线3、B【解析】【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂
7、心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断【详解】解:三角形三条高的交点是垂心,A选项不符合题意;三角形三条边中线的交点是三角形的重心,B选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意故选:B【考点】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键4、A【解析】【分析】直接找两个三角形的公共边即可【详解】解:三角形的公共边即两个三角形共同的边,两个三角形没有公共边;,两个三角形的公共边为;,两个三角形的公共边为;,两个三角形的公共边为故选【考点】此题考查了学生对三角形的认识
8、注意要审清题意,按题目要求解题5、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.6、B【解析】【分析】根据平行线的性质及三角形的内角和定理即可求解【详解】,B=A=180-B-故选B【考点】此题主要考查三角形的内角和,解题的关键是熟知三角形的内角和等于1807、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD
9、=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键8、C【解析】【分析】利用正多边形内角度数=180-360边数,计算出正多边形的内角,根据题意能够铺满地面的图形,即是两种或两种以上几何图形镶嵌成平面,围绕一点拼在一起的多边形的内角加在一起恰好组成一个360的周角,据此判断即可【详解】A、正三角形和正五边形内角分别为60、108,由于60m+108n=360,得,显然n取任何正整数时,m不能得正整数,故不能铺满,不符合题意;B、正方形和正六边形内角分别为90、120,90m+120n=360,同理m、n不存在正整数值使之成立,故不能铺满,不符合题意;
10、C、正方形的每个内角为90,正八边形的每个内角为135,90m+135n=360,当m=1,n=2时等式成立,符合题意;D、正五边形和正十边形内角分别为108、144,108m+144n=360,同理m、n不存在正整数值使之成立,故不能铺满地面,不符合题意故选:C【考点】此题主要考查了平面镶嵌,属于基础题,熟练掌握镶嵌的含义是解题的关键9、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键10、
11、C【解析】【分析】利用邻补角的概念、等量代换及平行线的判定求解可得【详解】证明:延长交于点,则又,得故(内错角相等,两直线平行)所以代表,代表,代表,代表内错角,故选:【考点】本题主要考查平行线的判定,解题的关键是掌握邻补角的概念、等量代换及平行线的判定二、填空题1、9【解析】【分析】n边形的内角和为(n-2)180,即多边形的内角和为180的整数倍,用1105除以180,所得余数和去掉的一个内角互补【详解】解:1105180=625,去掉的内角为180-25=155,设这个多边形为n边形,则(n-2)180=1105+155,解得n=9故答案为:9【考点】本题考查了多边形内角与外角关键是利用
12、多边形的内角和为180的整数倍,求多边形去掉的一个内角度数2、【解析】【分析】根据正多边形的性质,边数等于360除以每一个外角的度数,然后利用多边形的内角和公式计算内角和即可【详解】解:一个多边形的每个外角都是60,n=36060=6,则内角和为:(6-2)180=720,故答案为:720【考点】本题主要考查了利用外角求正多边形的边数的方法以及多边形的内角和公式,解题的关键是掌握任意多边形的外角和都等于360度3、#140度【解析】【分析】如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案【详解】解:如图,标注字母,由题意得: 故答案为:【考点】本题考查
13、的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键4、60;【解析】【分析】根据三角形内角和,可得ABC+ACB的度数,再由角平分线的性质,可得DCB+DBC的度数,根据外角性质得出CDE的度数【详解】解:,ABC+ACB=;BE、CF是ABC和ACB的角平分线,,;由外角性质可得:故答案为:【考点】本题主要考查角平分线性质、三角形的内角和与外角和性质,熟练掌握角度之间的大小关系与转化是解题的关键5、10【解析】【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2,三角形没有对角线,依此求出m、n、k的值,再代入计算即可求解【详解】解:对角线
14、的数量m=6-3=3条;分成的三角形的数量为n=6-2=4个;k=3时,多边形没有对角线;m+n+k=3+4+3=10故答案为:10【考点】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2三、解答题1、ABAC8cm,BC11cm或ABAC10cm,BC7cm【解析】【分析】设ABxcm,BCycm,则可以把题中边长分为ABAD12cm,BCCD15cm和ABAD15cm,BCCD12cm两种情况列出二元一次方程组求解,解方程组即可得到问题解答【详解】解:设ABxcm,BCycm则有以下两种情
15、况:(1)当ABAD12cm,BCCD15cm时,解得 ,即ABAC8cm,BC11cm,符合三边关系;(2)当ABAD15cm,BCCD12cm时,解得 ,即ABAC10cm,BC7cm,符合三边关系【考点】本题考查三角形中线的应用,利用方程求解及把问题分成两种情况讨论是解题关键 2、360【解析】【分析】先根据三角形的外角性质可得,再根据四边形的内角和即可得【详解】是的一个外角同理可得又故的度数为【考点】本题考查了四边形的内角和、三角形的外角性质、对顶角相等,熟记并灵活运用各性质是解题关键3、见解析【解析】【分析】由BE平分ABC,可得13,再利用等量代换可得到一对内错角相等,即23,即可
16、证明结论【详解】证明:BE平分ABC,13,12,23,BC/DE【考点】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键4、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1
17、)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.5、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可【详解】解:(1)由题意得:(2),解得【考点】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式