收藏 分享(赏)

人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx

上传人:a**** 文档编号:869421 上传时间:2025-12-17 格式:DOCX 页数:29 大小:695.39KB
下载 相关 举报
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第1页
第1页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第2页
第2页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第3页
第3页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第4页
第4页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第5页
第5页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第6页
第6页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第7页
第7页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第8页
第8页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第9页
第9页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第10页
第10页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第11页
第11页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第12页
第12页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第13页
第13页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第14页
第14页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第15页
第15页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第16页
第16页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第17页
第17页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第18页
第18页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第19页
第19页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第20页
第20页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第21页
第21页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第22页
第22页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第23页
第23页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第24页
第24页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第25页
第25页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第26页
第26页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第27页
第27页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第28页
第28页 / 共29页
人教版九年级数学上册第二十二章二次函数专题攻克试卷(解析版).docx_第29页
第29页 / 共29页
亲,该文档总共29页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在2、二次函数yax2bxc的图

2、象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x23、如图,抛物线y= a1x2与抛物线y=a2x2 +bx的交点P在第三象限,过点P作x轴的平行线,与两条抛物线分别交于点M、N,若,则的值是( )A3B2CD4、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD5、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度

3、,所得抛物线对应的函数表达式为()ABCD6、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD7、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线8、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD9、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关10、下列函数中,是二次函数的是()Ay6x2+1By6x+1CyDy+1第卷(非选择题 70分)二、填空题(5小题

4、,每小题4分,共计20分)1、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+cx+m的解集为_2、如图是二次函数yax2+bx+c的部分图象,由图象可知,满足不等式ax2+bx+c0的x的取值范围是_3、当1x3时,二次函数yx24x+5有最大值m,则m_4、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_5、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_三、解答题(5小题,每小题10分,共计50分)

5、1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值2、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由3、如图,在矩形ABCD中,AB=8,BC=10,点M是BC边上的动点,点M从点B出发,运动到点C停止,N是CD边上一动点,在

6、运动过程中,始终保持AMMN,设BM=x,CN=y(1)直接写出y与x的函数关系式,并写出自变量x的取值范围_;(2)先完善表格,然后在平面直角坐标系中利用描点法画出此抛物线直接写出m=_,x.2345678.y.23m32.(3)结合图象,指出M、N在运动过程中,当CN达到最大值时,BM的值是_;并写出在整个运动过程中,点N运动的总路程_4、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件设每件商品的售价x元(x为整数),每个月的销售量为y

7、件(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式5、为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元张远村老张计划明年承租部分土地种植某种经济作物考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,(1)求与之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?

8、(每亩种植利润每亩销售额每亩种植成本每亩种植补贴)-参考答案-一、单选题1、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.2、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二

9、次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交

10、点,熟练掌握二次函数的性质是解题的关键3、B【解析】【分析】设 ,则由抛物线的对称性可知,从而可得,再由即可得到,再根据即可得到【详解】解:设 ,由抛物线的对称性可知,即,又,即,或(舍去),故选B【考点】本题主要考查了二次函数的对称性,二次函数上点的坐标特征,解题的关键在于能够求出4、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过

11、的象限,找出,是解题的关键5、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键6、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c不是二次函数,故选项C不合题意;D、不是二次

12、函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键7、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答8、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式

13、解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便9、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不

14、含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键10、A【解析】【分析】根据二次函数的定义求解【详解】解:A是二次函数,故本选项符合题意;B是一次函数,不是二次函数,故本选项不符合题意;C是反比例函数,不是二次函数,故本选项不符合题意;D等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A【考点】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键二、填空题1、x1或x3【解析】【分析】利用函数图象与不等式的关系可以求得不等式的解集.【详解】数形结合知,二次函数比一次函数高的部分是x1或x3.【考点

15、】利用一次函数图象和二次函数图象性质数形结合解不等式:形如式不等式,构造函数=,如果,找出比,高的部分对应的x的值,找出比,低的部分对应的x的值.2、x5或x-1【解析】【分析】根据二次函数的对称性求出函数图象与x轴的另一交点,再写出函数图象在x轴上方部分的x的取值范围即可【详解】解:由图可知,二次函数图象为直线x=2,所以,函数图象与x轴的另一交点为(-1,0),所以,ax2+bx+c0时x的取值范围是x5或x-1故答案为:x5或x-1【考点】本题考查了二次函数与不等式,此类题目一般都利用数形结合的思想求解,本题求出函数图象与x轴的另一个交点是解题的关键3、10【解析】【分析】根据题目中的函

16、数解析式和二次函数的性质,可以求得m的值,本题得以解决【详解】二次函数yx24x+5(x2)2+1,该函数开口向上,对称轴为x2,当1x3时,二次函数yx24x+5有最大值m,当x1时,该函数取得最大值,此时m(12)2+110,故答案为:10【考点】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答4、 或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值

17、为0,1,2当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型5、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(m+1)x+(m+1)2,

18、把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键三、解答题1、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F

19、的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.2、; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛

20、物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存

21、在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中3、 (1)(2),画图见解析(3)5,【解析】【分析】(1)连接AN,根据题意可知,利用勾股定理分别在、和中,用x、y表示出、和再在中,根据勾股定理即可列出关于x、y的等式,整理即可最后根据M从点B出发,运动到点C停止,即得出x的取值范围;(2)将将x=5代入(1)所求解析式,求出y的值,即为m的值

22、;用描点法画图即可;(3)根据二次函数的性质即可解答(1)解:如图,连接AN,根据题意可知,在中,即,在中,即,在中,即,又AMMN,即在中,整理,得:M从点B出发,运动到点C停止,即y与x的函数关系式为故答案为:;(2)解:将x=5代入,得:,对于,当x=0时,当时,描点法画出此抛物线如下:(3)解:,当时,y有最大值即当CN达到最大值时,BM的值是5,在整个运动过程中,点N运动的总路程是故答案为:5,【考点】本题考查矩形的性质,勾股定理,二次函数的图象和性质根据题意结合勾股定理得出关于x、y的等式是解题关键4、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过

23、80元时,上涨的价格是元,就少卖件,用原来的210件去减得到销售量;当售价超过80元,超过80的部分是元,就少卖件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去得到最终的销售量(2)根据利润=(售价-成本)销量,现在的单件利润是元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子【详解】(1)当时,即当时,即,则(2)由利润=(售价-成本)销售量可以列出函数关系式为【考点】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上的

24、取值范围5、(1);(2)种植面积为240亩时总利润最大,最大利润268800元【解析】【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系为,进而得出W与x的函数关系式,再利用二次函数的最值公式求出即可【详解】解:(1)设与之间的函数关系式,依题意得:,解得:,与之间的函数关系式为(2)设老张明年种植该作物的总利润为元,依题意得:,当时,随的增大而增大由题意知:,当时,最大,最大值为268800元即种植面积为240亩时总利润最大,最大利润268800元【考点】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W与x的函数关系式是求最值问题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1