1、九年级数学上册第二十一章一元二次方程综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若对于任意实数a,b,c,d,定义adbc,按照定义,若 0,则x的值为()ABC3D2、定义运算:例如则方程的
2、根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根3、一元二次方程的解是A,B,C,D,4、若关于的方程没有实数根,则的值可以为()ABC0D15、若a是关于x的方程3x2x1=0的一个根,则20216a22a的值是()A2023B2022C2020D20196、用配方法解方程时,下列变形正确的是()ABCD7、下列方程中,关于x的一元二次方程是()A3x2yBxCx+1Dx2+2x38、方程的解是()A2或0B2或0C2D2或09、下列方程中,有两个相等实数根的是()ABCD10、某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场)
3、,共需安排15场比赛,则八年级班级的个数为()A5B6C7D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于的方程的一个根是1,则_2、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程_3、关于的一元二次方程的一个根是0,则另一个根是_4、若a是方程的解,计算:=_.5、一元二次方程的两根为, ,则的值为_ .三、
4、解答题(5小题,每小题10分,共计50分)1、如图,矩形中,点从点出发沿向点移动(不与点、重合),一直到达点为止;同时,点从点出发沿向点移动(不与点、重合)(1)若点、均以的速度移动,经过多长时间四边形为菱形?(2)若点为的速度移动,点以的速度移动,经过多长时间为直角三角形?2、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需
5、按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元3、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同时间/天x销量/kg120x储藏和损耗费用/元3x264x400(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1x10)的利润为377元,求x的值4、已知关于x的方程x2(m+2)x+(2m1)0(1)求证:方程恒有两
6、个不相等的实数根(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积5、解下列方程:(1);(2)-参考答案-一、单选题1、D【解析】【分析】根据新定义可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接开平方法解方程即可【详解】解:由题意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,两边直接开平方得:x=,故选:D【考点】此题主要考查了新定义,一元二次方程的解法-直接开平方法,关键是正确理解题意,列出方程2、A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程
7、有两个不相等的实数根,故选【考点】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键3、A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 4、A【解析】【分析】根据关于x的方程没有实数根,判断出0,求出m的取值
8、范围,再找出符合条件的m的值【详解】解:关于的方程没有实数根,=0,解得:,故选项中只有A选项满足,故选A.【考点】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.5、D【解析】【分析】先把a代入方程得到3a2-a=1,然后方程两边都乘以-2得-6a2+2a=-2,从而求出答案【详解】解:由题意得:3a2-a-1=0,3a2-a=1,-6a2+2a=-2,20216a22a =2021-2=2019故选:D【考点】本题考查的是逆用一元二次方程解的定义得出-6a2+2a的值,因此在解题时要重视解题思路的逆向分析6、B【解析】【分析】将方程的常数项移到右边,两边
9、都加上,左边化为完全平方式,右边合并即可得到结果【详解】移项得:,配方得:,即,故选:B【考点】本题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解7、D【解析】【分析】只含有一个未知数,且未知数的最高次数是2 的整式方程是一元二次方程,利用一元二次方程的定义对各选项进行判断【详解】解:A、方程3x2y含有2个未知数,所以A选项不符合题意; B、方程x,不是整式方程,所以B选项不符合题意; C、方程x+1是分式方程,所以C选项不符合题意; D
10、、方程x2+2x3是一元二次方程,所以D选项符合题意 故选D【考点】本题主要考查了一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.8、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为二次方程或一次方程是解题的关键9、A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.
11、中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键10、B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可【详解】解:设有x个班级参加比赛,解得:(舍),则共有6个班级参加比赛,故选:B【考点】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系二、填空题1、【解析】【分析】根据题意可得出1+6+m2-2m+5=0,然后解出该方程的解即可【详解】解:方程的一个根是1,1+6+m2-2m+5=0,m2-2m=-12, 2(m2-2m
12、)=-24故答案为:-24【考点】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件2、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键3、6【解析】【分析】把x0代入一元二次方程(m1)x26xm2m0得出m2m0,求出m0,代入方程,解方程即可求出方程的另一个根【详解】把x0代入方程(m1)x26xm2m0得出m
13、2m0,解得:m0或1,方程(m1)x26xm2m0是一元二次方程,m10,解得:m1,m0,代入方程得:x26x0,x(x6)0,x10,x26,即方程的另一个根为6故答案为:6【考点】本题考查了解一元二次方程,一元二次方程的解的定义的应用,解题的关键是求出m的值4、0【解析】【分析】根据一元二次方程的解的定义得a23a+1=0,即a23a=1,再代入,然后利用整体思想进行计算即可【详解】a是方程x23x+1=0的一根,a23a+1=0,即a23a=1,a2+1=3a故答案为0【考点】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解也考查了整体思想的运用5、2
14、【解析】【详解】【分析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,=-2,=4,=-2+4=2,故答案为2.【考点】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.三、解答题1、 (1) 经过秒四边形是菱形;(2)经过2秒、秒 、秒时为直角三角形【解析】【分析】(1)根据矩形性质可得,由P、Q两点速度大小相同得到平行四边形,只需,四边形是菱形,设经过x秒四边形是菱形,将BP、DP表示出来,建立一元二次方程即可得解;(2)由分为两种情况讨论:对,过Q
15、作于M,利用勾股定理即可得出关于x的一元二次方程,即可得解;对,则,由此可得关于x的一元一次方程,即可得解【详解】解:(1)由题可知,由于P、Q两点速度大小相同, 是平行四边形,当时,四边形是菱形;设经过了x秒四边形是菱形,则有:,由勾股定理得: 解得: 故经过秒四边形是菱形;(2) P、A两点不重合 为直角三角形有两种情况:当时过Q作于M,可知为矩形,如图所示,则有:, 解得:, ;当时,所以,解得 ;综上可知:经过2秒、秒 、秒时为直角三角形【考点】本题考查了矩形的性质、勾股定理的逆定理以及菱形的判定;解题的关键在于:(1)根据领边相等建立一元二次方程;(2)分类讨论,根据边与边的关系建立
16、方程;解决该类问题根据菱形的判定、勾股定理的逆定理得出关于x的方程是关键2、 (1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利销售的千克数总利润,列出方程解答即可;(3)利用每天总毛利润税费人工费水电房租费每天总纯利润,列出方程解答即可(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x10时,y600,当x11时,y60020580,由题意得,解得所以销量y与盈利x元之间的关系为y20x+800,当x17时,y460
17、,则每天的毛利润为174607820元;(2)解:设每千克盈利x元,由(1)可得销量为(20x+800)千克,由题意得x(20x+800)7500,解得:x125,x215,要使得顾客得到实惠,应选x15,每千克应涨价15105元;(3)解:设每千克盈利x元,由题意得x(20x+800)10%x(20x+800)1.5(20x+800)3006000,解得:x125,x2,则每千克应涨价251015元或10元【考点】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键3、 (1)10%(2)9【解析】【分析】(1)设该水果每次降价的百分率为y,根据题
18、意列出一元二次方程即可求解;(2)根据题意列出一元二次方程即可求解(1)设该水果每次降价的百分率为y,依题意,得10(1y)28.1,解得y10.110%,y21.9(不合题意,舍去)答:该水果每次降价的百分率为10%(2)依题意,得,解得x19,x211(舍去)答:x的值为9【考点】本题考查了一元二次方程的应用,准确理解题意列出一元二次方程是解答本题的关键4、 (1)证明见解析;(2)方程的另一个根为:;以此两根为边长的直角三角形的面积为或【解析】【分析】(1)根据一元二次方程根的判别式证明即可;(2)将代入方程可确定m的值,然后求解一元二次方程得出方程的另一个解;分两种情况讨论直角三角形的
19、面积:当该直角三角形的两直角边是1、3时;当该直角三角形的直角边和斜边分别是1、3时,利用勾股定理确定另一条直角边,然后求面积即可得(1)证明:,其中:,在实数范围内,m无论取何值,即,关于x的方程恒有两个不相等的实数根;(2)解:根据题意得:将代入方程可得:,解得,方程为,解得:或,方程的另一个根为;当该直角三角形的两直角边是1、3时,该直角三角形的面积为:;当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为,则该直角三角形的面积为;综上可得,该直角三角形的面积为或【考点】题目主要考查一元二次方程根的判别式,解一元二次方程,勾股定理,分情况讨论三角形等,理解题意,熟练掌握一元二次方程的解法是解题关键5、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键