收藏 分享(赏)

2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc

上传人:高**** 文档编号:858995 上传时间:2024-05-31 格式:DOC 页数:9 大小:336.50KB
下载 相关 举报
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第1页
第1页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第2页
第2页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第3页
第3页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第4页
第4页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第5页
第5页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第6页
第6页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第7页
第7页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第8页
第8页 / 共9页
2021-2022学年高一数学人教A版必修5学案:2-4 第2课时 等比数列的性质 WORD版含解析.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2课时等比数列的性质学 习 目 标核 心 素 养1.掌握等比数列的性质及其应用(重点)2.熟练掌握等比数列与等差数列的综合应用(难点、易错点)3.能用递推公式求通项公式(难点)1.通过灵活设项求解等比数列问题以及等比数列性质的应用,培养数学运算素养2.借助递推公式转化为等比数列求通项,培养逻辑推理及数学运算素养1推广的等比数列的通项公式an是等比数列,首项为a1,公比为q,则ana1qn1,anamqnm(m,nN*).2“子数列”性质对于无穷等比数列an,若将其前k项去掉,剩余各项仍为等比数列,首项为ak1,公比为q;若取出所有的k的倍数项,组成的数列仍为等比数列,首项为ak,公比为qk思

2、考:如何推导anamqnm?提示由qnm,anamqnm.3等比数列项的运算性质在等比数列an中,若mnpq(m,n,p,qN*),则amanapaq特别地,当mn2k(m,n,kN*)时,amana对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a1ana2an1akank1.4两等比数列合成数列的性质若数列an,bn均为等比数列,c为不等于0的常数,则数列can,a,anbn,也为等比数列思考:等比数列an的前4项为1,2,4,8,下列判断正确的是(1)3an是等比数列;(2)3an是等比数列;(3)是等比数列;(4)a2n是等比数列提示由定义可判断出(1)(3)(4)正

3、确1对任意等比数列an,下列说法一定正确的是()Aa1,a3,a9成等比数列Ba2,a3,a6成等比数列Ca2,a4,a8成等比数列Da3,a6,a9成等比数列答案D2等比数列an中,a13,q2,则a4 ,an 2432n1a4a1q332324,ana1qn132n1.3在等比数列an中,a54,a76,则a9 9因为a7a5q2,所以q2.所以a9a5q4a5(q2)249.4在等比数列an中,已知a7a125,则a8a9a10a11的值为 25因为a7a12a8a11a9a105,所以a8a9a10a1125.灵活设项求解等比数列【例1】已知4个数成等比数列,其乘积为1,第2项与第3项

4、之和为,则此4个数为 8,2,或,2,8设此4个数为a,aq,aq2,aq3.则a4q61,aq(1q),所以a2q31,当a2q31时,q0,代入式化简可得q2q10,此方程无解;当a2q31时,q0,a2a42a3a5a4a625,求a3a5;(3)若an0,a5a69,求log3a1log3a2log3a10的值思路探究:利用等比数列的性质,若mnpq,则amanapaq求解解(1)等比数列an中,因为a2a4,所以aa1a5a2a4,所以a1aa5.(2)由等比中项,化简条件得a2a3a5a25,即(a3a5)225,an0,a3a55.(3)由等比数列的性质知a5a6a1a10a2a

5、9a3a8a4a79,log3a1log3a2log3a10log3(a1a2a10)log3(a1a10)(a2a9)(a3a8)(a4a7)(a5a6)log39510.有关等比数列的计算问题,基本方法是运用方程思想列出基本量a1和q的方程组,先解出a1和q,然后利用通项公式求解但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用2(1)已知数列an为等比数列,a33,a1127,求a7;(2)已知an为等比数列,a2a836,a3a715,求公比q.解(1)法一:相除得q89.所以q43,所以a7a3q49.法二:因为aa3a1181,所以

6、a79,又a7a3q43q40,所以a79.(2)因为a2a836a3a7,而a3a715,所以a33,a712或a312,a73.所以q44或,所以q或q.由递推公式转化为等比数列求通项探究问题1如果数列an满足a11,an12an1(nN*),你能判断出an是等差数列,还是等比数列吗?提示由等差数列与等比数列的递推关系,可知数列an既不是等差数列,也不是等比数列2在探究1中,若将an12an1两边都加1,再观察等式的特点,你能构造出一个等比数列吗?提示在an12an1两边都加1得an112(an1),显然数列an1是以a112为首项,以q2为公比的等比数列3在探究1中,若将an12an1改

7、为an13an5,又应如何构造出一个等比数列?你能求出an吗?提示先将an13an5变形为an1x3(anx).将该式整理为an13an2x与an13an5对比可知2x5,即x;所以在an13an5两边都加,可构造出等比数列.利用等比数列求出an即可求出an.【例3】已知Sn是数列an的前n项和,且Sn2ann4.(1)求a1的值;(2)若bnan1,试证明数列bn为等比数列思路探究:(1)由n1代入Sn2ann4求得;(2)先由Sn2ann4,利用Sn和an的关系得an的递推关系,然后构造出数列an1利用定义证明解(1)因为Sn2ann4,所以当n1时,S12a114,解得a13.(2)证明

8、:因为Sn2ann4,所以当n2时,Sn12an1(n1)4,SnSn1(2ann4)(2an1n5),即an2an11,所以an12(an11),又bnan1,所以bn2bn1,且b1a1120,所以数列bn是以b12为首项,2为公比的等比数列1将本例条件“Sn2ann4”改为“a11,Sn14an2”,“bnan1”改为“bnan12an”,试证明数列bn是等比数列,并求bn的通项公式证明an2Sn2Sn14an124an24an14an.2.所以数列bn是公比为2的等比数列,首项为a22a1.因为S2a1a24a12,所以a25,所以b1a22a13.所以bn32n1.2将本例条件“Sn

9、2ann4”改为“a11,a2aanan1”,试证明数列an是等比数列,并求an的通项公式解由已知得aanan12a0,所以(an12an)(an1an)0.所以an12an0或an1an0,(1)当an12an0时,2.又a11,所以数列an是首项为1,公比为2的等比数列所以an2n1.(2)当an1an0时,1,又a11,所以数列an是首项为1,公比为1的等比数列,所以an1(1)n1(1)n1.综上:an2n1或(1)n1.1已知数列的前n项和或前n项和与通项的关系求通项,常用an与Sn的关系求解2由递推关系an1AanB(A,B为常数,且A0,A1)求an时,由待定系数法设an1A(a

10、n)可得,这样就构造了等比数列an1解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法2所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中项等列出方程(组),求出基本量3巧用等比数列的性质,减少计算量,这一点在解题中也非常重要1判断正误(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积()(2)当q1时,an为递增数列()(3)当q1时,an为常数列()答案(1)(2)(3)提示(2)当a10且q1时an为递增数列,故(2)错2在正项等比数列an中,3a1,a3,2a2成等差数列,则等于()A3或1B9或1C1 D9D由3a1,a3,2a2成等差数列可得a3

11、3a12a2,即a1q23a12a1q,a10,q22q30.解得q3或q1(舍).q29.3在和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为 8设插入的3个数依次为a,b,c,即,a,b,c,8成等比数列,由等比数列的性质可得b2ac84,因为a2b0,b2(舍负).所以这3个数的积为abc428.4已知数列an为等比数列(1)若a1a2a321,a1a2a3216,求an;(2)若a3a518,a4a872,求公比q.解(1)a1a2a3a216,a26,a1a336.又a1a321a215,a1,a3是方程x215x360的两根3和12.当a13时,q2,an32n1;当a112时,q,an12.(2)a4a8a3qa5q3a3a5q418q472,q44,q.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3