1、抽样、正态分布与统计案例练习题1、一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在),则在本次竞赛中,得分不低于80分的人数为.11、某班有50名学生,一次考试后数学成绩(N)服从正态分布N(100,102),已知P(90100)=0.3,估计该班学生数学成绩在110分以上的人数为.12、某班级共有学生54人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本.已知3号,29号,42号同学在样本中,那么样本中还有一个同学的学号是.13、(16课标卷)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.()由折线图看出,可用线性回归模型拟合y与
2、t的关系,请用相关系数加以说明;注:年份代码17分别对应年份20082014.()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据及公式:, ,错误!未找到引用源。2.646. 错误!未找到引用源。,错误!未找到引用源。14、(15课标卷)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48
3、65 81 74 56 54 76 65 79()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);()根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。15、(16四川)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5)分成9组,制成了如图所示的频率分布直方图.(I)求直方图中a的值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.