1、专题7:旋转的应用【典例引领】例题:在ABC和ADE中,BA=BC,DA=DE,且ABC=ADE=,点E在ABC的内部,连接EC,EB和BD,并且ACE+ABE=90.(1)如图1,当=60时,线段BD与CE的数量关系为 ,线段EA,EB,EC的数量关系为 ;(2)如图2当=90时,请写出线段EA,EB,EC的数量关系,并说明理由;(3)在(2)的条件下,当点E在线段CD上时,若BC=25,请直接写出BDE的面积. 【强化训练】1请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,ACB=90,BC=a,将边AB绕点B顺时针旋转90得到线段BD,连
2、接CD.求证:BCD的面积为12a2.(提示:过点D作BC边上的高DE,可证ABCBDE)(2)探究2:如图2,在一般的RtABC中,ACB=90,BC=a,将边AB绕点B顺时针旋转90得到线段BD,连接CD.请用含a的式子表示BCD的面积,并说明理由(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90得到线段BD,连接CD.试探究用含a的式子表示BCD的面积,要有探究过程2如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD
3、,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值3在四边形中,点为边上的一点,点为对角线上的一点,且.(1)若四边形为正方形.如图1,请直接写出与的数量关系_;将绕点逆时针旋转到图2所示的位置,连接,猜想与的数量关系并说明理由;(2)如图3,若四边形为矩形,其它条件都不变,将绕点顺时针旋转得到,连接,请在图3中画出草图,并直接写出与的数量关系.4如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合)第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去(1)图2中的EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;以中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由