1、1从集合0,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数abi,其中虚数的个数是()A30B42C36 D35解析:选C.因为abi为虚数,所以b0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6636个虚数2从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24 B18C12 D6解析:选B.三位数可分成两种情况:(1)奇偶奇;(2)偶奇奇对于(1),个位(3种选择),十位(2种选择),百位(2种选择),共12种;对于(2),个位(3种选择),十位(2种选择),百位(1种选择),共6种,即12618.故选B.3(2016
2、兰州诊断考试)从6名男医生、5名女医生中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A60种 B70种C75种 D150种解析:选C.从6名男医生中选出2名有C15种不同的选法,从5名女医生中选出1名有C5种不同的选法,根据分步乘法计数原理可得,组成的医疗小组共有15575种不同的选法,故选C.4如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A60 B48C36 D24解析:选B.长方体的6个表面构成的“平行线面组”有6636(个),另含4个顶点的6个面(非表面)构
3、成的“平行线面组”有6212(个),共361248(个)5.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A6种 B8种C12种 D48种解析:选D.从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(44)216种不同的方法;同理,若先游览B景点,有16种不同的方法;若先游览C景点,有16种不同的方法,因而所求的不同游览线路有31648(种)6(经典考题)满足a,b1,0,1,2,且关于x的方程ax22xb0有实
4、数解的有序数对(a,b)的个数为()A14 B13C12 D10解析:选B.若a0,则b1,0,1,2,此时(a,b)的取值有4个;若a0,则方程ax22xb0有实根,需44ab0,所以ab1,此时(a,b)的取值为(1,0),(1,1),(1,1),(1,2),(1,1),(1,0),(1,1),(2,1),(2,0),共9个所以(a,b)的个数为4913.7(2015高考广东卷)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了_条毕业留言(用数字作答)解析:A40391 560.答案:1 5608从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委
5、员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种(用数字作答)解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法由分步乘法计数原理可得,不同的选法共有34336(种)答案:369(2016沈阳模拟)三边长均为正整数,且最大边长为11的三角形的个数是_解析:另两边长用x,y表示,且不妨设1xy11,要构成三角形,必须xy12.当y取11时,x可取1,2,3,11,有11个三角形;当y取10时,x可取2,3,10,有9个三角形;当y取6时,
6、x只能取6,只有1个三角形所以所求三角形的个数为119753136.答案:3610(2016杭州质检)用1,2,3,4,5组成不含重复数字的五位数,数字2不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是_(注:用数字作答)解析:根据题意,可以分为两步:第一步将1,3,5分为两组且同一组的两个数排序,共有6种方法;第二步,将第一步的两组看成两个元素,与2,4排列,其中2不在两边且第一步两组(记为a,b)之间必有元素,即4,a,2,b;a,2,4,b;a,4,2,b;a,2,b,4,其中a,b可以互换位置,所以共有8种,根据分步乘法计数原理知,满足题意的五位
7、数共有6848(个)答案:4811有一项活动需在3名老师,6名男同学和8名女同学中选人参加,(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师、男同学、女同学各一人参加,有多少种不同选法?解:(1)只需一人参加,可按老师、男同学、女同学分三类各自有3、6、8种方法,总方法数为36817(种)(2)分两步,先选老师共3种选法,再选学生共6814种选法,由分步乘法计数原理知,总方法数为31442(种)(3)老师、男、女同学各一人可分三步,每步方法依次为3,6,8种,由分步乘法计数原理知方法数为368144(种)12由数字1,2,3,4,(1)可组成多少个三位数?(2)可组成多少个没有重复数字的三位数?(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字?解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步乘法计数原理知共可组成4364个三位数(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步乘法计数原理知共可排成没有重复数字的三位数43224(个)(3)排出的三位数分别是432、431、421、321,共4个