1、第二章22等差数列22.2等差数列的前n项和第二课时等差数列习题课课时跟踪检测A组基础过关1(2018贵州遵义月考)已知等差数列an的前n项和为Sn,S90,S80,S80,a50,由S84(a4a5)0,a4S7S5,有下列四个命题:d0;S12S7S5,得a60,a70,S6最大,错;d0,正确;S120,错故选A.答案:A3(2018河北衡水月考)设等差数列an的前n项和为Sn,已知S130,S140,若akak10,S147(a7a8)0,a80,k7时,a7a80,故选B.答案:B4已知等差数列an的前n项和为Sn,S100,且Sn5对一切nN*恒成立,则此等差数列an公差d的取值范
2、围是()A. BC. D.解析:由S1010a1d0,a1d.又Snna1dndd(n210n)(n5)225由Sn5对一切nN*恒成立,0d.当d0时,Sn5恒成立,d的取值范围是,故选B.答案:B5已知Sn是数列an的前n项和,且Sn1Snan3,a4a523,则S8()A72 B88C92 D98解析:由Sn1Snan3,得Sn1Snan3,an1an3,an是等差数列,公差为3,由a4a523,得S892,故选C.答案:C6设数列an的前n项和Snn2,则a8_.解析:a8S8S7644915.答案:157设Sn为等差数列an的前n项和,若a41, S510,则当Sn取得最大值时,n的
3、值为_解析:由a4a13d1,S55a110d10,得a14,d1,Sn4n,n4或n5时,Sn最大答案:4或58数列an的前n项和Sn33nn2.(1)求证:an是等差数列;(2)问an的前多少项和最大;(3)设数列bn的每一项都有bn|an|,求bn的前n项和Sn.解:(1)证明:当n2时,anSnSn1342n,又当n1时,a1S1323421满足an342n.故an的通项为an342n.所以an1an342(n1)(342n)2.故数列an是以32为首项,2为公差的等差数列(2)令an0,得342n0,所以n17,故数列an的前17项大于或等于零又a170,故数列an的前16项或前17
4、项的和最大(3)由(2)知,当n17时,an0;当n18时,an0.所以当n17时,Snb1b2bn|a1|a2|an|a1a2anSn33nn2.当n18时,Sn|a1|a2|a17|a18|an|a1a2a17(a18a19an)S17(SnS17)2S17Snn233n544.故SnB组技能提升1(2019甘肃武威月考)已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为()A. BC. D.解析:由a55,S515,得ann,由,T1001,故选A.答案:A2(2018甘肃兰州月考)已知数列an满足a2102,an1an4n(nN*),则数列的最小项的值为()A2
5、5 B26C27 D28解析:由an1an4n,得a2a14,a1a2498,a2a14,a3a28,anan14(n1),以上n1个式子相加,ana1484(n1)2n22n,an2n22n98,2n2.由函数f(x)2x在(0,7)时为减函数,在(7,)时为增函数,当n7时,有最小值,最小值为27226.故选B.答案:B3已知数列an的前n项和Snn2n,那么它的通项公式为an_.解析:当n1时,S1a12;当n2时,anSnSn1(n2n)(n1)2(n1)2n.当n1时,a1也符合上式,an2n.答案:2n4数列an的首项为3,bn为等差数列,且bnan1an(nN*)若b32,b10
6、12,则a8_.解析:bn为等差数列,公差d2,bnb32(n3)2n8,则an1an2n8,所以a8a1(a2a1)(a3a2)(a8a7)3(6)(4)633.答案:35在数列an中,a12,an2an12n1(n2,nN*)(1)令bn,求证:bn是等差数列;(2)在(1)的条件下,设Tn,求Tn.解:(1)证明:由an2an12n1,得2.2(n2)又bn.b11.数列bn是首项为1,公差为2的等差数列(2)由(1)知bn2n1,.Tn.6设数列an满足a10,且1.(1)求an的通项公式;(2)设bn,记Sn,证明:Sn1.解:(1)由题设1,即是公差为1的等差数列又1,故n.所以an1.(2)证明:由(1)得bn,Sn11.