1、课题:函数函数的概念 教学目的:1理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素;2理解静与动的辩证关系,激发学生学习数学的兴趣和积极性 教学重点:理解函数的概念;教学难点:函数的概念授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、复习引入:初中(传统)的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正
2、比例函数、反比例函数、一次函数、二次函数等问题1:()是函数吗?问题2:与是同一函数吗?观察对应: 二、讲解新课:(一)函数的有关概念 设A,B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个,在集合B中都有唯一确定的数和它对应,那么就称为从集合A到集合B的函数,记作, xA其中叫自变量,的取值范围A叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合(B)叫做函数y=f(x)的值域.函数符号表示“y是x的函数”,有时简记作函数. (1)函数实际上就是集合A到集合B的一个特殊对应 这里 A, B 为非空的数集.(2)A:定义域,原象的集合;:值域,象的集合,其中 B ;
3、:对应法则 , A , B(3)函数符号: 是 的函数,简记 (二)已学函数的定义域和值域1一次函数:定义域R, 值域R;2反比例函:定义域, 值域;3二次函数:定义域R值域:当时,;当时,三、例题讲解例1:1) y = x与y = x2x是同一函数吗? 2)F(x) = 1与G(x) = (x-1)0是同一函数吗?分析:1 构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,关键看两个函数的定义域和对应关系是否完全一致,若是的,即称这两个函数相等(或为同一函数)2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 例2:已知(x,y)在f下的对应元素是(x+y,x-y), 求(1) A中元素(-3,2)在B中对应的元素; (2) B中元素(2,1)在f中对应的元素. 四、课堂练习:课本第51页练习1,2,3,4五、小结 本节课学习了以下内容:函数是一种特殊的对应f:AB,其中集合A,B必须是非空的数集;表示y是x的函数;函数的三要素是定义域、值域和对应法则,定义域和对应法则一经确定,值域随之确定;判断两个函数是否是同一函数,必须三要素完全一样,才是同一函数;表示在x=a时的函数值,是常量;而是x的函数,通常是变量六、课后作业:课本第5152习题2.1:1,2,3,4,5七、板书设计(略)八、课后记: