章节与课题第二章第2.3.2节 向量平行的坐标表示1课时总课时085课时主备人审核人使用人使用日期或周次本课时学习目标或学习任务掌握向量平行的坐标表示方法本课时重点难点掌握向量平行的坐标表示及理解每日一言“直接向大师们而不是他们的学生学习。” 阿贝尔 学 习 过 程 向量平行的坐标表示导学案一、 自学准备与知识导学【复习】1、平行向量(共线向量) _ 2、共线向量基本定理 _【探究】 向量平行的坐标表示_练习:与是否平行?_;此时向量与的坐标满足_。一般地,设向量,如果,那么_,反过来,如果_,那么。证明:二、 学习交流与问题探讨例1、已知与,当实数为何值时,向量与平行?并确定此时它们是同向还是反向。例2、已知,求证:三点共线。例3、已知点的坐标分别为,是否存在常数,使成立?解释你所得结论的几何意义。三、 练习检测与拓展延伸1、已知与,且,求实数的值。2、若向量与共线且方向相反,则_。3、若向量,且,则_。4、已知,则与同方向的单位向量_。5、已知平行四边形的三个顶点的坐标分别是,求第四个顶点的坐标。6、已知向量,当为何值时:(1) (2)四、 课后反思