1、中档大题规范练数列1已知公差大于零的等差数列an的前n项和为Sn,且满足:a2a464,a1a518.(1)若1i21,a1,ai,a21是某等比数列的连续三项,求i的值(2)设bn,是否存在一个最小的常数m使得b1b2bn0,所以a2a4,所以a25,a413.所以所以a11,d4.所以an4n3.由1i21,a1,ai,a21是某等比数列的连续三项,所以a1a21a,即181(4i3)2,解得i3.(2)由(1)知,Snn142n2n,所以bn(),所以b1b2bn(1),因为,所以存在m使b1b2bnm对于任意的正整数n均成立2设Sn为数列an的前n项和,已知a10,2ana1S1Sn,
2、nN*.(1)求a1,a2,并求数列an的通项公式;(2)求数列nan的前n项和解(1)令n1,得2a1a1a,即a1a.因为a10,所以a11.令n2,得2a21S21a2,解得a22.当n2时,由2an1Sn,2an11Sn1,两式相减得2an2an1an,即an2an1.于是数列an是首项为1,公比为2的等比数列因此,an2n1.所以数列an的通项公式为an2n1.(2)由(1)知,nann2n1.记数列n2n1的前n项和为Bn,于是Bn122322n2n1,2Bn12222323n2n.,得Bn12222n1n2n2n1n2n.从而Bn1(n1)2n.即数列nan的前n项和为1(n1)
3、2n.3设数列an的前n项和为Sn,满足2Snan12n11,nN*,且a11,设数列bn满足bnan2n.(1)求证数列bn为等比数列,并求出数列an的通项公式;(2)若数列cn,Tn是数列cn的前n项和,证明:Tn3.(1)解当n2时,由2anan1an2nan13an2n,从而bn1an12n13(an2n)3bn,故bn是以3为首项,3为公比的等比数列,bnan2n33n13n,an3n2n(n2),因为a11也满足,于是an3n2n.(2)证明cn,则Tn,Tn,得Tn122,故Tn33.4已知单调递增数列an的前n项和为Sn,满足Sn(an)(1)求数列an的通项公式;(2)设cn
4、求数列cn的前n项和Tn.解(1)n1时,a1(a211),得a11,由Sn(an),则当n2时,Sn1(an1),得anSnSn1(aa1),化简得(an1)2a0,anan11或anan11(n2),又an是单调递增数列,故anan11,所以an是首项为1,公差为1的等差数列,故ann.(2)cn当n为偶数时,Tn(c1c3cn1)(c2c4cn)()3(21232n1)3()2(41)2n1.当n为奇数时,Tn(c1c3cn)(c2c4cn1)3(21232n2)()2(41)2n.所以Tn5已知函数f(x),数列an满足a11,an1f(),nN*.(1)求数列an的通项公式;(2)令bn(n2),b13,Snb1b2bn,若Sn对一切nN*恒成立,求最小正整数m.解(1)an1f()an,an是以1为首项,为公差的等差数列an1(n1)n.(2)当n2时,bn(),又b13(1),Snb1b2bn(1)(1),Sn对一切nN*恒成立,即对一切nN*恒成立,又0,.也为递增数列又1012,11.2512,则第9年年初需更新生产线