收藏 分享(赏)

2019-2020学年高一数学人教A版必修4学案:2-1-3相等向量与共线向量 WORD版含答案.doc

上传人:高**** 文档编号:809968 上传时间:2024-05-31 格式:DOC 页数:3 大小:34.50KB
下载 相关 举报
2019-2020学年高一数学人教A版必修4学案:2-1-3相等向量与共线向量 WORD版含答案.doc_第1页
第1页 / 共3页
2019-2020学年高一数学人教A版必修4学案:2-1-3相等向量与共线向量 WORD版含答案.doc_第2页
第2页 / 共3页
2019-2020学年高一数学人教A版必修4学案:2-1-3相等向量与共线向量 WORD版含答案.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二章平面向量2.1平面向量的实际背景及基本概念2.1.3相等向量与共线向量学习目标1.掌握平行向量、相等向量、共线向量等概念;会区分平行向量、相等向量和共线向量.2.认识现实生活中的平行向量和相等向量.3.培养学生认识客观事物的数学本质的能力.合作学习一、设计问题,创设情境问题1:满足什么条件的两个向量是相等向量?问题2:有一组向量,它们的方向相同或相反,这组向量有什么关系?二、学生探索,尝试解决问题1:问题2:三、信息交流,揭示规律1.相等向量定义:向量叫相等向量.问题3:单位向量相等吗?2.共线向量的定义及与平行向量的关系:平行向量也叫做共线向量,这是因为任一组平行向量都可移到同一直线上

2、(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.问题4:如果把一组平行向量的起点全部移到一点O,这时它们是不是平行向量?四、运用规律,解决问题【例1】(1)平行向量是否一定方向相同?()(2)不相等的向量是否一定不平行?()(3)与零向量相等的向量必定是什么向量?()(4)与任意向量都平行的向量是什么向量?()(5)若两个向量在同一直线上,则这两个向量一定是什么向量?()(6)两个非零向量相等的条件是什么?()(7)共线向量一定在同一直线上吗?()【例2】下列命题正确的是()A.a与b

3、共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行【例3】如图,设O是正六边形ABCDEF的中心. (1)与向量长度相等的向量有多少个?(2)是否存在与向量长度相等、方向相反的向量?五、变式演练,深化提高练习:判断下列命题是否正确,若不正确,请简述理由.(1)向量是共线向量,则A,B,C,D四点必在一直线上;(2)单位向量都相等;(3)四边形ABCD是平行四边形当且仅当(4)一个向量方向不确定当且仅当模为0;(5)共线的向量,若起点不同,则终点一定不同.六、反思小结,观点提炼请

4、同学们想一想,本节课我们学习了哪些知识?你还有其他什么收获?应该注意哪些事项?布置作业课本P78习题2.1A组第5,6题.参考答案一、设计问题,创设情境问题1:等长同向的两个非零向量是相等向量,我们规定,零向量=零向量.问题2:平行或共线.三、信息交流,揭示规律1.长度相等且方向相同问题3:单位向量不一定相等,只有在同向的情况下,才相等.问题4:由相等向量的定义可以知道,向量是自由向量,平移后依然是平行向量. 四、运用规律,解决问题【例1】解:(1)不一定(2)不一定(3)零向量(4)零向量(5)平行向量(6)长度相等且方向相同(7)不一定【例2】解析:由于零向量与任一向量都共线,所以A项不正

5、确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B项不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D项不正确;对于C项,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C项.答案:C【例3】(1)11个(2)存在五、变式演练,深化提高练习:解:(1)不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量在同一直线上.(2)不正确.单位向量模均相等且为1,但方向并不确定.(3)(4)正确.(5)不正确.如图共线,虽起点不同,但其终点却相同.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3