1、计算-公式类计算-平方和公式-4星题课程目标知识点考试要求具体要求考察频率平方和公式B1.熟悉平方和公式2.运用公式进行复杂的计算。少考知识提要平方和公式 平方和公式 12+22+32+n2=n(n+1)(2n+1)6 精选例题平方和公式 1. 计算:12+32+52+192= 【答案】1330【分析】原式=12+32+52+192=(12+22+32+192)-(22+42+182)=1920396-4(12+22+92)=2470-9101946=2470-2854=1330. 2. 计算:12+22+42+52+72+82+102+112+132+142+162 = 【答案】1001【分
2、析】原式=(12+22+162)-(32+62+92+122+152)=(12+22+162)-32(12+22+32+42+52)=1496-495=1001. 3. 12+32+52+192= 【答案】2185【分析】12+32+52+192=(12+22+32+192)-(22+42+182)=16192039-4(12+22+92)=2470-1691019=2470-285=2185. 4. 计算:14+37+510+99151= 【答案】256225【分析】观察可知式子中每一项乘积的被乘数与乘数依次成等差数列,被乘数依次为 1,3,5,99,乘数依次为 4,7,10,151,根据等
3、差数列的相关知识,被乘数可以表示为 2n-1,乘数可以表示为 3n+1,所以通项公式为 2n-13n+1=6n2-n-1所以,原式=612-1-1+622-2-1+6502-50-1=612+22+502-1+2+50-50=5051101-125051-50=256225.另解:如果不进行通项归纳,由于式子中每一项的被乘数与乘数的差是不相等,可以先将这个差变为相等再进行计算原式=1638+914+1520+297302=1633+5+99+5+1515+5+297297+5=1632+35+92+95+152+155+2972+2975=1632+92+152+2972+53+9+15+29
4、7=16912+32+52+992+531+3+5+99=3212+32+52+992+521+3+5+99.而 12+32+52+992 和 1+3+5+99 都是我们非常熟悉的12+32+52+992=12+22+32+1002-22+42+62+1002=16100101201-4165051101=16100101201-102=1699100101=166650, 1+3+5+99=502=2500,所以原式=32166650+522500=256225.小结:从上面的计算过程中可以看出,12+32+52+992=1699100101,而12+23+99100=1399100101,
5、所以有12+32+52+9922=12+23+99100. 5. 计算:1129+1228+1921= 【答案】3315【分析】原式=202-92+202-82+202-12=2029-12+22+92=3600-1691019=3315. 6. 12+32+52+72+372= 【答案】9139【分析】因为12+22+32+42+(2n-1)2+(2n)2=2n(2n+1)(4n+1)6 22+42+(2n)2=412+22+n2=4n(n+1)(2n+1)6. 所以12+32+(2n-1)2+22+42+(2n)2=2n(2n+1)(4n+1)612+32+52+(2n-1)2=13n4n
6、2-1.当 n=19 时, 原式=13194192-1=9139. 7. 24123+145+12021-112+112+22+112+22+102= 【答案】6011【分析】虽然很容易看出 37= 13,1021= 752 可是再仔细一看,并没有什么效果,因为这不象分数裂项那样能消去很多项我们再来看后面的式子,每一项的分母容易让我们想到公式 12+22+32+n2=16n(n+1)(2n+1),于是我们又有 112+22+n2=6n(n+1)(2n+1)减号前面括号里的式子有 10 项,减号后面括号里的式子也恰好有 10 项,是不是“一个对一个”呢?24123+145+12021-112+1
7、12+22+112+22+102=24123+145+12021-61123+1235+1101121=24123+145+12021-241243+1465+1202221=24123-1243+145-1465+12021-1202221=24124+146+12022=6112+123+11011=61-111=6011 8. 计算:112+122+132+202= 【答案】2485【分析】原式=(12+22+202)-(12+22+102)=4121206-2110116=2485. 9. 对自然数 a 和 n,规定 an=an+an-1,例如 32=32+3=12,那么:(1)12+
8、22+32+992= ;(2)21+22+23+299= 【答案】(1)333300;(2)3299-3【分析】(1)原式=12+1+22+2+32+3+992+99=12+22+32+992+1+2+3+99=991001996+4950=328350+4950=333300;(2)原式=21+20+22+21+23+22+299+298=20+21+22+298+21+22+23+299=20+21+22+2983=299-13=3299-3.10. 计算:13+24+35+911= 【答案】375【分析】原式=2-12+1+3-13+1+10-110+1=22-1+32-1+102-1=
9、22+32+102-9=12+22+32+102-10=1011216-10=375.11. 计算:36+49+64+81+400= 【答案】2815【分析】原式=62+72+82+202=12+22+32+202-12+22+32+42+52=16202141-165611=2870-55=2815.12. 规定 ab=a(a+2)-(a+1)-b,计算:(21)+(1110)= 【答案】505【分析】这个题目直接套用定义给的公式非常麻烦,需要套用 10 次,然后再求和但是我们注意到要求的 10 项值有一个共同的特点就是在要我们求得这个式子中 b=a-1,所以,我们不妨把 b=a-1 代入原
10、定义ab=a(a+2)-(a+1)-b就变成了ab=a(a+2)-(a+1)-(a-1)=a2.所以 21=22,32=32,32=112,则原式=22+32+42+112=1112236-1=505.13. 12+23+34+45+56+67+78+89+910= 【答案】330【分析】本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算对于项数较多的情况,可以进行如下变形:nn+1=nn+1n+2-n-1nn+13=13nn+1n+2-13n-1nn+1所以原式=13123+13234-13123+1391011-138910=139101
11、1=330另解:由于 nn+1=n2+n,所以原式=12+1+22+2+92+9=12+22+92+1+2+9=1691019+12910=330采用此种方法也可以得到12+23+nn+1=13nn+1n+214. 11+23+35+47+99197= 【答案】651750【分析】12+22+n2=16n(n+1)(2n+1) 12+23+34+n(n+1)=13n(n+1)(n+2) 原式=12+22+32+992+12+23+34+9899=1699100199+139899100=328350+323400=65175015. 计算:122+232+342+18192+19202 = 【
12、答案】41230【分析】分拆(2-1)22=23-22,(3-1)32=33-32,再用公式,原式=(23-22)+(33-32)+(203-202)=(1+23+33+203)-(1+22+32+202)=2022124-2021416=41230.16. 已知正整数 A 分解质因数可以写成 A=235,其中 , 是自然数如果 A 的二分之一是完全平方数,A 的三分之一是完全立方数,A 的五分之一是某个自然数的五次方,那么 + 的最小值是 【答案】31【分析】A 的二分之一是完全平方数,-1, 是 2 的倍数;A 的三分之一是完全立方数,,-1, 是 3 的倍数;A 的五分之一是某个自然数的
13、五次方,,-1 是 5 的倍数;要 + 的值最小,分别求满足条件的 , 值:35-1 是 2 的倍数, 的最小值为 15,23-1 是 5 的倍数, 的最小值为 6,25-1 是 3 的倍数, 的最小值为 10,所以 + 的最小值是:15+6+10=3117. 看规律 13=12,13+23=32,13+23+33=62,试求 63+73.+143【答案】10800【分析】原式=13+23+143-13+23.+53=1+2+3+142-1+2+3+4+52=1052-152=105-15105+15=90120=10800.18. 计算下列式子的值:24(123+145+12021)-(11
14、2+112+22+112+22+102)【答案】6011【分析】虽然很容易看出 123=12-13,145=14-15 可是再仔细一看,并没有什么效果,因为这不像分数裂项那样能消去很多项我们再来看后面的式子,每一项的分母容易让我们想到公式12+22+32+n2=16n(n+1)(2n+1),于是我们又有112+22+32+n2=6n(n+1)(2n-1).减号前面括号里的式子有 10 项,减号后面括号里的式子也恰好有 10 项24(123+145+12021)-(112+112+22+112+22+102)=24(123+145+12021)-6(1123+1235+1101112)=24(123+145+12021)-24(1243+1465+1202221)=24(123-1243)+(145-1465)+(12021-1202221)=24(124+146+12022)=6(112+123+11011)=6(1-111)=6011