收藏 分享(赏)

2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc

上传人:高**** 文档编号:771504 上传时间:2024-05-30 格式:DOC 页数:8 大小:287KB
下载 相关 举报
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第1页
第1页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第2页
第2页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第3页
第3页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第4页
第4页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第5页
第5页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第6页
第6页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第7页
第7页 / 共8页
2020-2021学年高中人教A版数学必修3学案:3-1-2 概率的意义 WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.1.2概率的意义学 习 目 标核 心 素 养1理解概率的意义,会用概率的意义解释生活中的实例(重点、难点)2了解“极大似然法”和遗传机理中的统计规律.1通过概率意义的理解,培养数学抽象素养2借助实际问题中的统计规律,提升数学建模素养.1对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性2实际问题中几个实例 (1)游戏的公平性裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球权的概率均为0.5,所以这个规则是公平的在设计某种游戏规则时,一定要考虑这种规则对每个人都是公平的这一重要原

2、则(2)决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一(3)天气预报的概率解释天气预报的“降水概率”是随机事件的概率,其指明了“降水”这个随机事件发生的可能性的大小(4)试验与发现 概率学的知识在科学发展中起着非常重要的作用,例如,奥地利遗传学家孟德尔利用豌豆所做的试验,经过长期观察得出了显性与隐性的比例接近31,而对这一规律进行深入研究,得出了遗传学中一条重要的统计规律(5)遗传机理中的统计规律孟德尔通过收集豌豆试验数据,寻找到了其中的统计规

3、律,并用概率理论解释这种统计规律利用遗传定律,帮助理解概率统计中的随机性与规律性的关系,以及频率与概率的关系1已知某人在投篮时投中的概率为50%,则下列说法正确的是()A若他投100次,一定有50次投中B若他投一次,一定投中C他投一次投中的可能性大小为50%D以上说法均错C概率是指一件事情发生的可能性大小2同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况()A这100个铜板两面是一样的B这100个铜板两面是不同的C这100个铜板中有50个两面是一样的,另外50个两面是不相同的D这100个铜板中有20个两面是一样的,另外80个两面是不相同的A

4、落地时100个铜板朝上面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大3如果袋中装有数量差别很大而大小相同的白球和黄球(只是颜色不同)若干个,从中任取1球,取了10次有7个白球,估计袋中数量较多的是_球白取10次球有7次是白球,则取出白球的频率是0.7,故可估计袋中数量较多的是白球4若事件A发生的概率为,则表示_事件A发生的可能性的大小表示事件A发生的可能性的大小对概率的理解探究问题1随机事件A的概率P(A)反映了什么?提示反映了事件A发生的可能性的大小2随机事件在一次试验中是否发生与概率的大小有关系吗?提示随机事件的概率表明了随机事件发生的可能性的大小,但并不表示概率大的事

5、件一定发生,概率小的事件一定不发生【例1】经统计,某篮球运动员的投篮命中率为90%,对此有人解释为其投篮100次一定有90次命中,10次不中,你认为这种解释正确吗?说说你的理由思路点拨:结合概率的意义,正确理解概率的含义解这种解释不正确,原因如下:因为“投篮命中”是一个随机事件,90%是指此事件发生的概率,即每次投篮有90%命中的把握,但就一次投篮而言,也可能不发生,也可能发生,并不是说投100次必中90次1(变条件)某种疾病治愈的概率是30%,有10个人来就诊,如果前7个人没有治愈,那么后3个人一定能治愈吗?如何理解治愈的概率是30%?解不一定如果把治疗一个病人当作一次试验,治愈的概率是30

6、%,是指随着试验次数的增加,大约有30%的病人能治愈,对于一次试验来说,其结果是随机的因此,前7个病人没有治愈是有可能的,而对后3个病人而言,其结果仍是随机的,即有可能治愈,也有可能不能治愈2(变结论)经统计,某篮球运动员的投篮命中率为90%,已知他连续投篮5次均未投中,那么下次投篮的命中率一定会大于90%,这种理解对吗?解这种理解不正确此运动员命中率为90%,是他每次投中的可能性,但对于每一次投篮,其结果都是随机的,他连续5次未中是有可能的,但对下一次投篮而言,其命中率仍为90%,而不会大于90%.理解概率意义应关注的三个方面(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,

7、随机事件A发生的概率是大量重复试验中事件A发生的频率的稳定值.(2)由频率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.(3)正确理解概率的意义,要清楚与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.游戏的公平性【例2】某转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜猜数方案从以下两种方案中选一种:A猜“是奇数”或

8、“是偶数”;B猜“是4的整数倍数”或“不是4的整数倍数”请回答下列问题:(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?解(1)为了尽可能获胜,乙应选择方案B,猜“不是4的整数倍数”,这是因为“不是4的整数倍数”的概率为0.8,超过了0.5,故为了尽可能获胜,选择方案B.(2)为了保证游戏的公平性,应当选择方案A,这是因为方案A猜“是奇数”和“是偶数”的概率均为0.5,从而保证了该游戏的公平性1游戏公平性的标准及判断方法(1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性或概率是否相同若相同,则规则公平,否则就是不公平的(2)具体

9、判断时,可以按所给规则,求出双方的获胜概率,再进行比较2极大似然法的应用在“风险与决策”中经常会遇到统计中的极大似然法:如果我们面临的是从多个可以选择的答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法1设有外形完全相同的两个箱子,甲箱有99个白球和1个黑球,乙箱有1个白球和99个黑球,若随机地抽取一箱,再从此箱中任意抽取一球,结果取得白球,则这个球最有可能是从_箱中抽出的(填“甲”或“乙”)甲甲箱中有99个白球和1个黑球,故随机地取出一球,得到白球的可能性是;乙箱中有1个白球和99个黑球,从中任取一球,得到白球的可能性是.由此看

10、出,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多由极大似然法知,既然在一次随机抽样中抽到白球,当然可以认为是从概率大的箱子中抽出的,所以我们作出统计推断,该白球是从甲箱中抽出的2.有一种游戏是这样的:在一个大转盘上,盘面被均匀地分成12份,分别写有112这12个数字(如图所示),其中2,4,6,8,10,12这6个区域对应的奖品是文具盒,而1,3,5,7,9,11这6个区域对应的奖品是随身听游戏规则是转盘转动后指针停在哪一格,则继续向前前进对应转盘上数字的格数例如:你转动转盘停止后,指针落在4所在区域,则还要往前前进4格,到标有8的区域,此时8区域对应的奖品就是你的,以此类推请问:小明

11、在玩这个游戏时,得到的奖品是随身听的概率是多少?解根据题意知转盘停止后,指针所在区域再前进相应格数后所在位置均为标有偶数的区域,故得到的奖品是随身听的概率是0.概率在实际生活中的应用【例3】为了估计水库中鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号(不影响其存活),然后放回水库经过适当时间,再从水库中捕出一定数量的鱼,如500尾,查看其中做记号的鱼的数量,设有40尾试根据上述数据,估计水库中鱼的尾数解设水库中鱼的尾数为n,n是未知的,现在要估计n的值假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾,设事件A带有记号的鱼,由概率的统计定义可知P(A)

12、.笫二次从水库中捕出500尾,观察每尾鱼上是否有记号,共需观察500次,其中带有记号的鱼有40尾,即事件A发生的频数m40,P(A).由两式,得,解得n25 000.所以估计水库中有鱼25 000尾处理概率应用问题的技巧(1)求概率:先利用频率等方法求出事件的概率.如本题中先求出带记号的鱼的概率.(2)估计值:利用概率的稳定性,根据频率公式估计数值.如本题中计算总体的数目,即求水库中鱼的尾数.3某中学为了了解初中部学生的某项行为规范的养成情况,在校门口按系统抽样的方法:每2分钟随机抽取一名学生,登记佩带胸卡的学生的名字结果,150名学生中有60名佩带胸卡第二次检查,调查了初中部的所有学生,有5

13、00名学生佩带胸卡据此估计该中学初中部一共有多少名学生?解设初中部有n名学生,依题意得,解得n1 250.所以该中学初中部共有学生大约1 250名1概率是描述随机事件发生的可能性大小的一个度量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大2概率与频率的关系:对于一个事件而言,概率是一个常数,频率则随试验次数的变化而变化,次数越多频率越接近其概率1判断下列结论的正误(正确的打“”,错误的打“”)(1)事件A发生的概率很小时,该事件为不可能事件()(2)某医院治愈某种病的概率为0.8,则10个人去治疗,一定有8人能治愈()(3)平时的多次比赛中,小明获胜的次数比小华的高,

14、所以这次比赛应选小明参加()答案(1)(2)(3)2在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为.那么以下理解正确的是()A某顾客抽奖10次,一定能中奖1次B某顾客抽奖10次,可能1次也没中奖C某顾客消费210元,一定不能中奖D某顾客消费1 000元,至少能中奖1次B中奖概率表示每一次抽奖中奖的可能性都是,故不论抽奖多少次,都可能一次也不中奖,故选B.3某厂产品的次品率为2%,估算该厂生产的1 000件产品中合格产品的件数可能为_件9801 000(12%)980(件)4解释下列概率的含义:(1)某厂生产的电子产品合格的概率为0.997;(2)某商场进行促销活动,购买商品满200元,即可参加抽奖活动,中奖的概率为0.6;(3)一位气象学工作者说,明天下雨的概率是0.8;(4)按照法国著名数学家拉普拉斯的研究结果,一个婴儿将是女孩的概率是.解(1)生产1 000件电子产品大约有997件是合格的(2)购买商品满200元进行抽奖,中奖的可能性为0.6.(3)在今天的条件下,明天下雨的可能性是80%.(4)一个婴儿将是女孩的可能性是.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3