1、建文外国语学校高二年级数学学科导学案 主备: 审核: 授课人: 授课时间: 学案编号: 班级: 姓名: 小组:课题:3.1.4 空间向量的正交分解及其坐标表示 课型:新授课 教师“复备”栏或学生质疑、总结栏【学习目标】1. 掌握空间向量的正交分解及空间向量基本定理和坐标表示;2. 掌握空间向量的坐标运算的规律;【重难点预测】1.重点:空间向量基本定理及其推论2.难点:空间向量基本定理唯一性理解【学法指导】自主学习,合作探究【学习过程】自主学习案一、课前准备(预习教材P92-96找出疑惑之处)复习1:平面向量基本定理:对平面上的任意一个向量,是平面上两个 向量,总是存在 实数对,使得向量可以用来
2、表示,表达式为 ,其中叫做 . 若,则称向量正交分解. 复习2:平面向量的坐标表示:平面直角坐标系中,分别取x轴和y轴上的 向量作为基底,对平面上任意向量,有且只有一对实数x,y,使得,则称有序对为向量的 ,即 .二、新课导学 学习探究探究任务一:空间向量的正交分解问题:对空间的任意向量,能否用空间的几个向量唯一表示?如果能,那需要几个向量?这几个向量有何位置关系?新知: 空间向量的正交分解:空间的任意向量,均可分解为不共面的三个向量、,使. 如果两两 ,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量 ,对空间任一向量,存在有序实数组,使得. 把 的一个基底,都叫做基向量
3、.反思:空间任意一个向量的基底有 个.单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用i,j,k表示.空间向量的坐标表示:给定一个空间直角坐标系O-xyz和向量a,且设i、j、k为 x轴、y轴、z轴正方向的单位向量,则存在有序实数组,使得,则称有序实数组为向量a的坐标,记着 .设A,B,则 .向量的直角坐标运算:设a,b,则ab;ab;a;ab.试试:1. 设,则向量的坐标为 .2. 若A,B,则 .3. 已知a,b,求ab,ab,8a,ab知识点一 向量基底的判断例1 已知向量是空间的一个基底,从向量中选哪一个向量,一定可以与向量 构成空间的另
4、一个基底?变式1:已知O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C是否共面?变式1:以下四个命题中正确的是( )A空间的任何一个向量都可用其它三个向量表示B若a,b,c为空间向量的一组基底,则a,b,c全不是零向量CABC为直角三角形的充要条件是0D任何三个不共线的向量都可构成空间向量的一个基底小结:判定空间三个向量是否构成空间的一个基底的方法是:这三个向量一定不共面.知识点二 用基底表示向量例2 如图,M,N分别是四面体QABC的边OA,BC的中点,P,Q是MN的三等分点,用表示和. 变式:已知平行六面体,点G是侧面的中心,且,试用向量表示下列向量: . 知识点
5、三 求空间向量的坐标例3.已知PA垂直于正方形ABCD所在的平面,M、N分别是AB,PC的三等分点且PN2NC,AM2MB,PAAB1,求 的坐标 变式:在直三棱柱ABOA1B1O1中,AOB= ,|AO| = 4,|BO|= 2,|AA1| = 4,D为A1B1的中点,则在如图所示的空间直角坐标系中,求的坐标.练1. 已知,求:; .练2. 正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,则点,的坐标分别是 , , .三、总结提升 学习小结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表示及其运算 知识拓展建立空间直角坐标系前,一定要验证三条轴
6、的垂直关系,若图中没有建系的环境,则根据已知条件,通过作辅助线来创造建系的图形. 课后练习案1. 若为空间向量的一组基底,则下列各项中,能构成基底的是( )A. B. C. D. 2. 设i、j、k为空间直角坐标系O-xyz中x轴、y轴、z轴正方向的单位向量,且,则点B的坐标是 3. 在三棱锥OABC中,G是的重心(三条中线的交点),选取为基底,试用基底表示 4. 正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,E为BB1中点,则E的坐标是 .5. 已知关于x的方程有两个实根,且,当t 时,的模取得最大值.6. 已知正方体ABCDA1B1C1D1中,点O为AC1与BD1的交点,xyz,则xyz_.7. 在长方体ABCDA1B1C1D1中,下列关于的表达式中:;)8. 已知,求线段AB的中点坐标及线段AB的长度.9. 已知是空间的一个正交基底,向量是另一组基底,若在的坐标是,求在的坐标.10. 正方体ABCDA1B1C1D1中,点是上底面的中心,求下列各式的值 (1) (2)