1、一功和能功 能 功能关系 功:W=FScos(只适用恒力的功)功率:动能:221 mvEk 势能:mghEp 机械能:E=EP+EK=mgh+1/2 mv2动能定理:2022121mvmvWt 合机械能 守恒定律 2222112121mvmghmvmghcosFvtWP功是能量转化的量度W=EEp=1/2kx2二.功能关系-功是能量转化的量度重力所做的功等于重力势能的减少电场力所做的功等于电势能的减少弹簧的弹力所做的功等于弹性势能的减少合外力所做的功等于动能的增加只有重力和弹簧的弹力做功,机械能守恒重力以外的力所做的功等于机械能的增加克服一对滑动摩擦力所做的净功等于机械能的减少E=fS(S 为
2、相对位移)克服安培力所做的功等于感应电能的增加三.应用动能定理分析一个具体过程时,要做到三个“明确”,即明确研究对象(研究哪个物体的运动情况),明确研究过程(从初状态到末状态)及明确各个力做功的情况。还要注意是合力的功。应用动量定理、动量守恒定律的注意点:要注意研究对象的受力分析,研究过程的选择,还要特别注意正方向的规定。应用动量守恒定律还要注意适用条件的检验。应用动量定理要注意是合外力。例1关于机械能守恒,下面说法中正确的是 A物体所受合外力为零时,机械能一定守恒B在水平地面上做匀速运动的物体,机械能一定守恒C在竖直平面内做匀速圆周运动的物体,机械能一定守恒D做各种抛体运动的物体,若不计空气
3、阻力,机械能一定守恒D练习按额定功率行驶的汽车,所受地面的阻力保持不变,则 A汽车加速行驶时,牵引力不变,速度增大B汽车可以做匀加速运动C汽车加速行驶时,加速度逐渐减小,速度逐渐增大D汽车达到最大速度时,所受合力为零C D 例2.如图示的装置中,木块与水平面的接触是光滑的,子弹沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩到最短的整个过程中()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能不守恒D 例3、钢球从高处向下落,最后陷入泥中,如果空气阻力可忽
4、略不计,陷入泥中的阻力为重力的n 倍,求(1)钢珠在空中下落的高度H与陷入泥中的深度h的比值 Hh=?(2)钢珠在空中下落的时间T与陷入泥中的时间t的比值Tt=?解:(1)由动能定理,选全过程mg(H+h)nmgh=0H+h=n hH:h=n-1(2)由动量定理,选全过程mg(T+t)nmgt=0T+t=n t T:t=n-1说明:全程分析法是一种重要的物理分析方法,涉及到多个物理过程的题目可首先考虑采用全过程分析例4、如图所示,三块完全相同的木块固定在水平地面上,设速度为v0子弹穿过木块时受到的阻力一样,子弹可视为质点,子弹射出木块C时速度变为v0/2.求:(1)子弹穿过A和穿过B 时的速度
5、v1=?v2=?(2)子弹穿过三木块的时间之比t1t2t3=?V0 A BC解:(1)由动能定理:f 3l=1/2mv02-1/2m(v0/2)2f 2l=1/2mv02-1/2mv22f l=1/2mv02 -1/2mv12234/22202020vvvv134/21202020vvvv02012223vvvv(2)由动量定理:f t1=mv0-mv1f t2=mv1 mv2f t3=mv2 mv0/223322223230000211021vvvvvvvvtt12232/2222232/0000022132vvvvvvvvtt)12(:)23(:)32(:321ttt四 碰撞的分类完全弹性
6、碰撞 动量守恒,动能不损失(质量相同,交换速度)完全非弹性碰撞 动量守恒,动能损失最大。(以共同速度运动)非完全弹性碰撞 动量守恒,动能有损失。碰 撞后的速度介于上面两种碰撞的速度之间.五.弹性碰撞的公式:ABV0静止ABV2V1 由动量守恒得:m1V0=m1V 1 +m2V2 由系统动能守恒222211201212121VmVmVm021120212112VmmmVVmmmmV质量相等的两物体弹性碰撞后交换速度.上式只适用于B球静止的情况。1.物块m1滑到最高点位置时,二者的速度;2.物块m1从圆弧面滑下后,二者速度3.若m1=m2物块m1从圆弧面滑下后,二者速度 如图所示,光滑水平面上质量
7、为m1=2kg的物块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑圆弧面斜劈体。求:例5.m1m2v0解:(1)由动量守恒得m1V0=(m1+m2)V V=m1V0/(m1+m2)=0.5m/s(2)由弹性碰撞公式smVmmmVsmVmmmmV/1262222/12626202112021211(3)质量相等的两物体弹性碰撞后交换速度 v1=0 v2=2m/s例6.一传送皮带与水平面夹角为30,以2m/s的恒定速度顺时针运行。现将一质量为10kg的工件轻放于底端,经一段时间送到高2m的平台上,工件与皮带间的动摩擦因数为=0.866 ,求带动皮带的电动机由于传送工件多消耗的电能。30vN
8、mgf解:设工件向上运动距离S 时,速度达到传送带的速度v,由动能定理可知mg S cos30 mg S sin30=0 1/2 mv 2解得 S=0.8m,说明工件未到达平台时,速度已达到 v,所以工件动能的增量为EK=1/2 m v2=20J工件重力势能增量为EP=mgh=200J在工件加速运动过程中,工件的平均速度为 v/2 ,因此工件的位移是皮带运动距离S的1/2,即S=2S=1.6 m 由于滑动摩擦力作功而增加的内能 E 为E=f S=mgcos30(SS)=60J电动机多消耗的电能为 EK+EP+E=280J96年高考21 在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作
9、用一段时间后,换成相反方向的恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32 J,则在整个过程中,恒力甲做的功等于焦耳,恒力乙做的功等于焦耳.ABCF甲F乙S解:A-BS=1/2a1 t2=F1 t2/2mv=at=F1 t/mvB-CA-S=vt-1/2 a2 t2=F1 t 2/m-F2 t2/2mF2=3 F1ABCA 由动能定理F1S+F2S=32W1=F1S=8JW2=F2S=24J8J24J练习1、一物体静止在光滑水平面,施一向右的水平恒力F1,经t 秒后将F1 换成水平向左的水平恒力F2,又经过t 秒物体恰好回到出发点,在这一过程中
10、F1、F2 对物体做的功分别是W1、W2,求:W1W2=?解一:画出运动示意图,由动量定理和动能定理:v1v2F1F2F1 t=mv1 (1)F2 t=-mv2-mv1 (2)F1 S=1/2 mv12 (3)F2 S=1/2 mv22-1/2 mv12 (4)(1)/(2)F1/F2=v1/(v1+v2)(3)/(4)F1/F2=v12/(v12-v22)化简得v2=2v1(5)由动能定理:W1=1/2 mv12W2=1/2 mv22-1/2 mv12=3 1/2 mv12W2=3 W1v1v2F1F2解法二、将代入/得 F1F2=13 W2/W1=F1S/F2S=13解法三、用平均速度:S
11、=v tv1v2=v1/2=(-v2+v1)/2 v2=2 v1 由动能定理:W1=1/2m v12W2=1/2m v22-1/2m v12=3/2 m v12 W2=3W1 例7、如图所示,质量为M的小车左端放一质量为m的物体.物体与小车之间的摩擦系数为,现在小车与物体以速度v0在水平光滑地面上一起向右匀速运动.当小车与竖直墙壁发生弹性碰撞后,物体在小车上向右滑移一段距离后一起向左运动,求物体在小车上滑移的最大距离.Mmv0解:小车碰墙后速度反向,由动量守恒定律Mmv0v0(M+m)V=(M-m)v0最后速度为V,由能量守恒定律MmVV1/2(M+m)v02-1/2(M+m)V 2=mg S
12、gmMMS)(220例8.如图所示,质量为M的火箭,不断向下喷出气体,使它在空中保持静止.如果喷出气的速度为,则火箭发动机的功率为()(A)Mg;(B)Mg;(C)M2;(D)无法确定.2121解:对气体:Ft=mv 对火箭:F=Mg 对气体:Pt=1/2mv2=1/2 Ft v P=1/2 F v=1/2Mg vB如下图所示,劲度系数为k1的轻弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓缦地坚直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中,物块2的重力势能增加了,物块1的重力势能
13、增加了_。22212)(kgmmm221211)11)(gkkmmm一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T 内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无
14、相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率P。BADC解析:以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有:S=1/2at2v0=at在这段时间内,传送带运动的路程为:S0=v0 t由以上可得:S0=2S用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为Af S1/2mv02传送带克服小箱对它的摩擦力做功A0f S021/2mv02两者之差就是摩擦力做功发出的热量Q1/2mv02也可直接根据摩擦生热 Q=f S=f(S0-S)计算题目可见,在小箱加速运动过程中
15、,小箱获得的动能与发热量相等.Q1/2mv02T时间内,电动机输出的功为:W=PT此功用于增加小箱的动能、势能以及克服摩擦力发热,即:W=N 1/2mv02+mgh+Q=N mv02+mgh已知相邻两小箱的距离为L,所以:v0TNL v0NL/T 联立,得:ghTLNTNmP222题目练习2.一个不稳定的原子核、质量为M,开始时处于静止状态、放出一个质量为m的粒子后反冲,已知放出粒子的动能为E0,则反冲核的动能为()(A)E0(B)(C)(D)0EMm0EmMm02)(EmMMmC练习、某地强风的风速为v,空气的密度为,若在刮强风时把通过横截面积为S的风的动能50%转化为电能,则电功率为P=.
16、4/3Sv练习3.下列说法正确的是:()(A)一对摩擦力做的总功,有可能是一负值,有可能是零;(B)物体在合外力作用下做变速运动,动能一定变化;(C)当作用力作正功时,反作用力一定做负功;(D)当作用力不作功时,反作用力一定也不作功;(E)合外力对物体做功等于零,物体一定是做匀速直线运动.A练习4、水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上(初速度为零),它将在传送带上滑动一段距离后速度才达到v 而与传送带保持相对静止,设工件质量为m,它与传送带间的滑动摩擦系数为,在这相对滑动的过程中()(A)滑动摩擦力对工件所做的功为mv2/2(B)工件的机械能增加量为mv2/2(C)工件相对于传送带滑动的路程大小为v2/2g(D)传送带对工件做功为零A B C练习5.如图所示,质量为M的木板静止在光滑的水平面上,其上表面的左端有一质量为m的物体以初速度v0,开始在木板上向右滑动,那么:()(A)若M固定,则m对M的摩擦力做正功,M对m的摩擦力做负功;(B)若M固定,则m对M的摩擦力不做功,M对m的摩擦力做负功;(C)若M自由移动,则m和M组成的系统中摩擦力做功的代数和为零;(D)若M自由移动,则m克服摩擦力做的功等于M增加的动能和转化为系统的内能之和。B D