1、【正弦定理、余弦定理模拟试题】一. 选择题: 1. 在中,则A为( ) 2. 在( ) 3. 在中,则A等于( ) 4. 在中,则边等于( ) 5. 以4、5、6为边长的三角形一定是( ) A. 锐角三角形B. 直角三角形 C. 钝角三角形D. 锐角或钝角三角形 6. 在中,则三角形为( ) A. 直角三角形B. 锐角三角形 C. 等腰三角形D. 等边三角形 7. 在中,则是( ) A. 锐角三角形B. 直角三角形 C. 钝角三角形D. 正三角形 8. 三角形的两边分别为5和3,它们夹角的余弦是方程的根,则三角形的另一边长为( ) A. 52B. C. 16D. 4二. 填空题: 9. 在中,
2、则_,_ 10. 在中,化简_ 11. 在中,已知,则_ 12. 在中,A、B均为锐角,且,则是_三. 解答题: 13. 已知在中,解此三角形。 14. 在四边形ABCD中,四个角A、B、C、D的度数的比为3:7:4:10,求AB的长。 15. 已知的外接圆半径是,且满足条件。 (1)求角C。 (2)求面积的最大值。【试题答案】一. 选择题: 1. A 提示: 2. B 提示:由题意及正弦定理可得 3. C 提示:由余弦定理及已知可得 4. D 提示: 5. A 提示:长为6的边所对角最大,设它为 则 6. C 提示:由余弦定理可将原等式化为 7. C 提示:原不等式可变形为 8. B 提示:由题意得或2(舍去) 二. 填空题: 9. 提示: 又 10. a 提示:利用余弦定理,得原式 11. 提示:由正弦定理得 设1份为k,则 再由余弦定理得 12. 钝角三角形 提示:由得 A、B均为锐角, 而在上是增函数 即 三. 解答题: 13. 解:由正弦定理得: 当时, 14. 解:设四个角A、B、C、D的度数分别为3x、7x、4x、10x 则有 解得 连BD,在中,由余弦定理得: 是以DC为斜边的直角三角形 15. 解:(1) 即 由正弦定理知 即 由余弦定理得 (2) 当AB时,S有最大值