1、利用导数研究函数的零点问题1已知函数f (x)x3bxaxln x,x(0,),a,bR(1)当a0时,讨论函数f (x)的单调性;(2)当a1时,函数f (x)在上有零点,求实数b的取值范围解(1)f (x)的定义域为(0,), 当a0时,函数f (x)x3bx,f (x)3x2b,x(0,)当b0时,f (x)3x2b0恒成立,所以f (x)在(0,)上单调递增当b0时,令f (x)0,得x1,x2(舍去),当x时,f (x)0,f (x)单调递增,当0x时,f (x)0,f (x)单调递减综上所述,当b0时,函数f (x)在(0,)上单调递增;当b0时,函数f (x)在上单调递增,在上单
2、调递减(2)当a1时,函数f (x)x3bxxln x,函数f (x)在上有零点,即方程f (x)0在上有解,即bln xx2在上有解令g(x)ln xx2,x,则g(x)2x,令g(x)0,得x2,则函数g(x)在上单调递减;令g(x)0,得x,则函数g(x)在上单调递增又gln 2,gln 2,g(2)4ln 2,gg(2)2ln 220,所以g(x)ming(2)4ln 2,g(x)maxgln 2故实数b的取值范围是2(2021石家庄模拟)已知函数f (x)2a2ln xx2(a0)(1)当a1时,求曲线yf (x)在点(1,f (1)处的切线方程;(2)求函数f (x)的单调区间;(
3、3)讨论函数f (x)在区间(1,e2)内零点的个数(e为自然对数的底数)解(1)当a1时,f (x)2ln xx2,f (x)2x,f (1)0,又f (1)1,曲线yf (x)在点(1,f (1)处的切线方程为y10(2)f (x)2a2ln xx2,f (x)2xx0,a0,当0xa时,f (x)0;当xa时,f (x)0f (x)在(0,a)上单调递增,在(a,)上单调递减(3)由(2)得f (x)maxf (a)a2(2ln a1)讨论函数f (x)的零点情况如下:当a2(2ln a1)0,即0a时,函数f (x)无零点,函数f (x)在(1,e2)内无零点当a2(2ln a1)0,
4、即a时,函数f (x)在(0,)内有唯一零点a,而1ae2,函数f (x)在(1,e2)内有一个零点当a2(2ln a1)0,即a时,f (1)10,f (a)a2(2ln a1)0,f (e2)2a2ln e2e44a2e4(2ae2)(2ae2)当2ae20,即a时,f (e2)0,由函数的单调性可知,函数f (x)在(1,a)内有唯一零点x1,在(a,e2)内有唯一零点x2,f (x)在(1,e2)内有两个零点当2ae20,即a时,f (e2)0,由函数的单调性可知,f (x)在(1,e2)内只有一个零点综上所述,当0a时,函数f (x)在(1,e2)内无零点;当a或a时,函数f (x)
5、在(1,e2)内有一个零点;当a时,函数f (x)在(1,e2)内有两个零点3设函数f (x)x2axln x(aR)(1)当a1时,求函数f (x)的单调区间;(2)若函数f (x)在上有两个零点,求实数a的取值范围解(1)函数f (x)的定义域为(0,),当a1时,f (x)2x1,令f (x)0,得x(负值舍去),当0x时,f (x)0;当x时,f (x)0f (x)的单调递增区间为,单调递减区间为(2)令f (x)x2axln x0,得ax令g(x)x,其中x,则g(x)1,令g(x)0,得x1,当x1时,g(x)0;当1x3时,g(x)0,g(x)的单调递减区间为,单调递增区间为(1,3,g(x)ming(1)1,函数f (x)在上有两个零点,g3ln 3,g(3)3,3ln 33,实数a的取值范围是