收藏 分享(赏)

《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC

上传人:高**** 文档编号:739898 上传时间:2024-05-30 格式:DOC 页数:24 大小:492.50KB
下载 相关 举报
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第1页
第1页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第2页
第2页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第3页
第3页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第4页
第4页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第5页
第5页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第6页
第6页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第7页
第7页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第8页
第8页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第9页
第9页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第10页
第10页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第11页
第11页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第12页
第12页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第13页
第13页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第14页
第14页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第15页
第15页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第16页
第16页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第17页
第17页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第18页
第18页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第19页
第19页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第20页
第20页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第21页
第21页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第22页
第22页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第23页
第23页 / 共24页
《学霸优课》2017数学(理)一轮对点训练:8-5-2 利用空间向量求空间角与距离 WORD版含解析.DOC_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1如图,已知ABC,D是AB的中点,沿直线CD将ACD翻折成ACD,所成二面角ACDB的平面角为,则()AADB BADBCACB DACB答案B解析若CDAB,则ADB为二面角ACDB的平面角,即ADB.若CD与AB不垂直,在ABC中,过A作CD的垂线交线段CD或CD的延长线于点O,交BC于E,连接AO,则AOE为二面角ACDB的平面角,即AOE,AOAO,AAO.又ADAD,AADADB.而AAO是直线AA与平面ABC所成的角,由线面角的性质知AAOAAD,则有.故sin的取值范围是.3如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上

2、,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值解(1)交线围成的正方形EHGF如图:(2)作EMAB,垂足为M,则AMA1E4,EMAA18.因为EHGF为正方形,所以EHEFBC10.于是MH6,所以AH10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),(10,0,0),(0,6,8)设n(x,y,z)是平面EHGF的法向量,则即所以可取n(0,4,3)又(10,4,8)

3、,故|cosn,|.所以AF与平面EHGF所成角的正弦值为.4如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB1,ACAA12,ADCD,且点M和N分别为B1C和D1D的中点(1)求证:MN平面ABCD;(2)求二面角D1ACB1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长解如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,2,2)又因为M,N分别为B1C和D1D的中点,得

4、M,N(1,2,1)(1)证明:依题意,可得n(0,0,1)为平面ABCD的一个法向量.(0,0)由此可得n0,又因为直线MN平面ABCD,所以MN平面ABCD.(2)(1,2,2),(2,0,0)设n1(x1,y1,z1)为平面ACD1的法向量,则即不妨设z11,可得n1(0,1,1)设n2(x2,y2,z2)为平面ACB1的法向量,则又(0,1,2),得不妨设z21,可得n2(0,2,1)因此有cosn1,n2,于是sinn1,n2,所以,二面角D1ACB1的正弦值为.(3)依题意,可设,其中0,1,则E(0,2),从而(1,2,1)又n(0,0,1)为平面ABCD的一个法向量,由已知,得

5、cos,n,整理得2430,又因为0,1,解得2.所以,线段A1E的长为2.5如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABCBAD,PAAD2,ABBC1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长解以,为正交基底建立如下图所示的空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(1)因为AD平面PAB,所以是平面PAB的一个法向量,(0,2,0)因为(1,1,2),(0,2,2)设平面PCD的法向量为m(x,y,z

6、),则m0,m0,即令y1,解得z1,x1.所以m(1,1,1)是平面PCD的一个法向量从而cos,m,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为(1,0,2),设(,0,2)(01),又(0,1,0),则(,1,2),又(0,2,2),从而cos,.设12t,t1,3,则cos2,.当且仅当t,即时,|cos,|的最大值为.因为ycosx在上是减函数,此时直线CQ与DP所成角取得最小值又因为BP,所以BQBP.6如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:ACAB1;(2)若ACAB1,CBB160,ABBC,求二面角AA1B1C1的余弦

7、值解(1)证明:连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1OCO,故ACAB1.(2)因为ACAB1,且O为B1C的中点,所以AOCO.又因为ABBC,所以BOABOC.故OAOB,从而OA,OB,OB1两两互相垂直以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Oxyz.因为CBB160,所以CBB1为等边三角形又ABBC,则A,B(1,0,0),B1,C,.设n(x,y,z)是平面AA1B1的法向量,则即所以可取n(1,

8、)设m是平面A1B1C1的法向量,则同理可取m(1,)则cosn,m.所以二面角AA1B1C1的余弦值为.7在平面四边形ABCD中,ABBDCD1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值解(1)证明:平面ABD平面BCD,平面ABD平面BCDBD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)过点B在平面BCD内作BEBD,如图由(1)知AB平面BCD,BE平面BCD,BD平面BCD,ABBE,ABBD.以B为坐标原点,分别以,的方向为x轴、y轴、z轴的

9、正方向建立空间直角坐标系依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则(1,1,0),(0,1,1)设平面MBC的法向量n(x0,y0,z0),则即取z01,得平面MBC的一个法向量n(1,1,1)设直线AD与平面MBC所成角为,则sin|cosn,|,即直线AD与平面MBC所成角的正弦值为.8如图,四棱柱ABCDA1B1C1D1的所有棱长都相等,ACBDO,A1C1B1D1O1,四边形ACC1A1和四边形BDD1B1均为矩形(1)证明:O1O底面ABCD;(2)若CBA60,求二面角C1OB1D的余弦值解(1)证明:如图1,因为四边形ACC1A1为矩

10、形,所以CC1AC.同理DD1BD.因为CC1DD1,所以CC1BD.而ACBDO,因此CC1底面ABCD.由题设知,O1OC1C.故O1O底面ABCD.(2)解法一:如图1,过O1作O1HOB1于H,连接HC1.由(1)知,O1O底面ABCD,所以O1O底面A1B1C1D1,于是O1OA1C1.又因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1B1D1,从而A1C1平面BDD1B1,所以A1C1OB1,于是OB1平面O1HC1,进而OB1C1H.故C1HO1是二面角C1OB1D的平面角不妨设AB2.因为CBA60,所以OB,OC1,OB1.在

11、RtOO1B1中,易知O1H2.而O1C11,于是C1H.故cosC1HO1.即二面角C1OB1D的余弦值为.解法二:因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此ACBD.又O1O底面ABCD,从而OB,OC,OO1两两垂直如图2,以O为坐标原点,OB,OC,OO1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系Oxyz.不妨设AB2.因为CBA60,所以OB,OC1,于是相关各点的坐标为:O(0,0,0),B1(,0,2),C1(0,1,2)易知,n1(0,1,0)是平面BDD1B1的一个法向量设n2(x,y,z)是平面OB1C1的一个法向量,则即取z

12、,则x2,y2,所以n2(2,2,)设二面角C1OB1D的大小为,易知是锐角,于是cos|cosn1,n2|.故二面角C1OB1D的余弦值为.9三棱锥ABCD及其侧视图、俯视图如图所示设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MNNP.(1)证明:P是线段BC的中点;(2)求二面角ANPM的余弦值解(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,ABD,BCD为正三角形,因此AOBD,OCBD.因为AO,OC平面AOC,且AOOCO,所以BD平面AOC.又因为AC平面AOC,所以BDAC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所

13、以NHAO,MNBD.因为AOBD,所以NHBD.因为MNNP,所以NPBD.因为NH,NP平面NHP,且NHNPN,所以BD平面NHP.又因为HP平面NHP,所以BDHP.又OCBD,HP平面BCD,OC平面BCD,所以HPOC.因为H为BO中点,故P为BC中点(2)解法一:如图,作NQAC于Q,连接MQ.由(1)知,NPAC,所以NQNP.因为MNNP,所以MNQ为二面角ANPM的一个平面角由(1)知,ABD,BCD为边长为2的正三角形,所以AOOC.由俯视图可知,AO平面BCD.因为OC平面BCD,所以AOOC,因此在等腰RtAOC中,AC.作BRAC于R,在ABC中,ABBC,所以BR

14、.因为在平面ABC内,NQAC,BRAC,所以NQBR.又因为N为AB的中点,所以Q为AR的中点,因此NQ.同理,可得MQ.所以在等腰MNQ中,cosMNQ.故二面角ANPM的余弦值是.解法二:由俯视图及(1)可知,AO平面BCD.因为OC,OB平面BCD,所以AOOC,AOOB.又OCOB,所以直线OA,OB,OC两两垂直如图,以O为坐标原点,以,的方向为x轴、y轴、z轴的正方向,建立空间直角坐标系Oxyz.则A(0,0,),B(1,0,0),C(0,0),D(1,0,0)因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M,N,P.于是(1,0,),(1,0),(

15、1,0,0),.设平面ABC的一个法向量n1(x1,y1,z1),则即有 从而取z11,则x1,y11,所以n1(,1,1)设平面MNP的一个法向量n2(x2,y2,z2),则即有从而取z21,所以n2(0,1,1)设二面角ANPM的大小为,则cos.故二面角ANPM的余弦值是.10如图,四棱锥PABCD中,ABCD为矩形,平面PAD平面ABCD.(1)求证:ABPD;(2)若BPC90,PB,PC2,问AB为何值时,四棱锥PABCD的体积最大?并求此时平面PBC与平面DPC夹角的余弦值解(1)证明:ABCD为矩形,故ABAD;又平面PAD平面ABCD,平面PAD平面ABCDAD,所以AB平面

16、PAD,故ABPD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG.故PO平面ABCD,BC平面POG,BCPG,在RtBPC中,PG,GC,BG,设ABm,则OP,故四棱锥PABCD的体积为Vm.因为m,故当m,即AB时,四棱锥PABCD的体积最大此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故,(0,0),设平面BPC的法向量n1(x,y,1),则由n1,n1得解得x1,y0,n1(1,0,1)同理可求出平面DPC的法向量n2,从而平面BPC与平面DPC夹角的余弦值为cos.11四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于A

17、D,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值解(1)证明:由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1,由题设,BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理EFAD,HGAD,EFHG.四边形EFGH是平行四边形又ADDC,ADBD,AD平面BDC.ADBC.EFFG.四边形EFGH是矩形(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0

18、),(0,0,1),(2,2,0),(2,0,1)设平面EFGH的法向量n(x,y,z),EFAD,FGBC,n0,n0,得取n(1,1,0)sin|cos,n|.解法二:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别是BD,DC的中点,得E,F(1,0,0),G(0,1,0),(1,1,0),BA(2,0,1)设平面EFGH的法向量n(x,y,z),则n0,n0.得取n(1,1,0)sin|cos,n|.12.如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,

19、点E为棱PC的中点(1)证明:BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值解解法一:依题意,以点A为原点建立空间直角坐标系(如图),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)由E为棱PC的中点,得E(1,1,1)(1)证明:向量(0,1,1),(2,0,0),故0.所以BEDC.(2)向量(1,2,0),(1,0,2)设n(x,y,z)为平面PBD的法向量,则即不妨令y1,可得n(2,1,1)为平面PBD的一个法向量于是有cosn,.所以,直线BE与平面PBD所成角的正弦值为.(3)向量(

20、1,2,0),(2,2,2),(2,2,0),(1,0,0)由点F在棱PC上,设,01.故(12,22,2)由BFAC,得0,因此,2(12)2(22)0,解得.即.设n1(x,y,z)为平面FAB的法向量,则即不妨令z1,可得n1(0,3,1)为平面FAB的一个法向量取平面ABP的法向量n2(0,1,0)则cosn1,n2.易知,二面角FABP是锐角,所以其余弦值为.解法二:(1)证明:如图,取PD中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EMDC,且EMDC,又由已知,可得EMAB且EMAB,故四边形ABEM为平行四边形,所以BEAM.因为PA底面ABCD,故PACD,而

21、CDDA,从而CD平面PAD,因为AM平面PAD,于是CDAM,又BEAM,所以BECD.(2)连接BM.由(1)知CD平面PAD,得CDPD,而EMCD,故PDEM.又因为ADAP,M为PD的中点,故PDAM,可得PDBE,所以PD平面BEM,故平面BEM平面PBD.所以,直线BE在平面PBD内的射影为直线BM,而BEEM,可得EBM为锐角,故EBM为直线BE与平面PBD所成的角依题意,有PD2,而M为PD中点,可得AM,进而BE.故在直角三角形BEM中,tanEBM,因此sinEBM.所以,直线BE与平面PBD所成角的正弦值为.(3)如图,在PAC中,过点F作FHPA交AC于点H.因为PA底面ABCD,故FH底面ABCD,从而FHAC.又BFAC,得AC平面FHB,因此ACBH.在底面ABCD内,可得CH3HA,从而CF3FP.在平面PDC内,作FGDC交PD于点G,于是DG3GP.由于DCAB,故GFAB,所以A,B,F,G四点共面由ABPA,ABAD,得AB平面PAD,故ABAG.所以PAG为二面角FABP的平面角在PAG中,PA2,PGPD,APG45,由余弦定理可得AG,cosPAG.所以二面角FABP的余弦值为.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3