1、重难点强化练(五) 动能定理与机械能守恒定律的综合应用1(多选)滑块以速率v1靠惯性沿固定斜面由底端向上运动,当它回到出发点时速率变为v2,且v2v1。若滑块向上运动的位移中点为A,取斜面底端重力势能为零,则()A上升时机械能减小,下降时机械能增大B上升时机械能减小,下降时机械能也减小C上升过程中动能和势能相等的位置在A点上方D上升过程中动能和势能相等的位置在A点下方解析:选BC由v2mgR,质点不能到达Q点CWmgR,质点到达Q点后,继续上升一段距离DWmgR,质点到达Q点后,继续上升一段距离解析:选C设质点到达N点的速度为vN,在N点质点受到轨道的弹力为FN,则FNmg,已知FNFN4mg
2、,则质点到达N点的动能为EkNmvN2mgR。质点由开始至N点的过程,由动能定理得mg2RWfEkN0,解得摩擦力做的功为WfmgR,即克服摩擦力做的功为WWfmgR。设从N到Q的过程中克服摩擦力做功为W,则WW。从N到Q的过程,由动能定理得mgRWmvQ2mvN2,即mgRWmvQ2,故质点到达Q点后速度不为0,质点继续上升一段距离。选项C正确。9.(多选)如图6,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上。a、b通过铰链用刚性轻杆连接,由静止开始运动。不计摩擦,a、b可视为质点,重力加速度大小为g。则()图6Aa落地前,轻杆对b一直做正功Ba落地时速度大
3、小为Ca下落过程中,其加速度大小始终不大于gDa落地前,当a的机械能最小时,b对地面的压力大小为mg解析:选BD由题意知,系统机械能守恒。设某时刻a、b的速度分别为va、vb。此时刚性轻杆与竖直杆的夹角为,分别将va、vb分解,如图。因为刚性杆不可伸长,所以沿杆的分速度v与v是相等的,即vacos vb sin 。当a滑至地面时90,此时vb0,由系统机械能守恒得mghmva2,解得va,选项B正确。同时由于b初、末速度均为零,运动过程中其动能先增大后减小,即杆对b先做正功后做负功,选项A错误。杆对b的作用先是推力后是拉力,对a则先是阻力后是动力,即a的加速度在受到杆的向下的拉力作用时大于g,
4、选项C错误。b的动能最大时,杆对a、b的作用力为零,此时a的机械能最小,b只受重力和支持力,所以b对地面的压力大小为mg,选项D正确。正确选项为B、D。10(多选)(全国甲卷)如图7,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。现将小球从M点由静止释放,它在下降的过程中经过了N点。已知在M、N两点处,弹簧对小球的弹力大小相等,且ONMOMN。在小球从M点运动到N点的过程中,()图7A弹力对小球先做正功后做负功B有两个时刻小球的加速度等于重力加速度C弹簧长度最短时,弹力对小球做功的功率为零D小球到达N点时的动能等于其在M、N两点的重力势能差解析:选BCD在M、N两点处,弹簧对
5、小球的弹力大小相等,且ONMOMN,则小球在M点时弹簧处于压缩状态,在N点时弹簧处于拉伸状态,小球从M点运动到N点的过程中,弹簧长度先缩短,当弹簧与竖直杆垂直时弹簧达到最短,这个过程中弹力对小球做负功,然后弹簧再伸长,弹力对小球开始做正功,当弹簧达到自然伸长状态时,弹力为零,再随着弹簧的伸长弹力对小球做负功,故整个过程中,弹力对小球先做负功,再做正功,后再做负功,选项A错误。在弹簧与杆垂直时及弹簧处于自然伸长状态时,小球加速度等于重力加速度,选项B正确。弹簧与杆垂直时,弹力方向与小球的速度方向垂直,则弹力对小球做功的功率为零,选项C正确。由机械能守恒定律知,在M、N两点弹簧弹性势能相等,在N点
6、动能等于从M点到N点重力势能的减小值,选项D正确。11.杂技演员甲的质量为M80 kg,乙的质量为m60 kg。跳板轴间光滑,质量不计。甲、乙一起表演节目。如图8所示。开始时,乙站在B端,A端离地面1 m,且OAOB。甲先从离地面H6 m的高处自由跳下落在A端。当A端落地时,乙在B端恰好被弹起。假设甲碰到A端时,由于甲的技艺高超,没有能量损失。分析过程假定甲、乙可看做质点。(取g10 m/s2)问:图8(1)当A端落地时,甲、乙两人速度大小各为多少?(2)若乙在B端的上升可以看成是竖直方向,则乙离开B端还能被弹起多高?解析:(1)甲跳下直到B端弹起到最高点的过程中,甲、乙机械能守恒,有MgHM
7、v甲2mv乙2mgh而v甲v乙,h1 m联立可解得v甲v乙2 m/s。(2)乙上升到最高点的过程中,机械能守恒,有:mv乙2mgh1,解得h13 m。答案:(1)2 m/s2 m/s(2)3 m12(全国甲卷)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l。现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接。AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图9所示。物块P与AB间的动摩擦因数0.5。用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动。重力加
8、速度大小为g。图9(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围。解析:(1)依题意,当弹簧竖直放置,长度被压缩至l时,质量为5m的物体的动能为零,其重力势能转化为弹簧的弹性势能。由机械能守恒定律,弹簧长度为l时的弹性势能为Ep5mgl设P的质量为M,到达B点时的速度大小为vB,由能量守恒定律得EpMvB2Mg4l联立式,取Mm并代入题给数据得vB若P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足mg0设P滑到D点时的速度为vD,由机械能守恒定律得mvB2mvD2mg2l联立式得vDvD满足式要求,故P能运动到D点,并从D点以速度vD水平射出。设P落回到轨道AB所需的时间为t,由运动学公式得2lgt2P落回到AB上的位置与B点之间的距离为svDt联立式得s2l。(2)为使P能滑上圆轨道,它到达B点时的速度不能小于零。由式可知5mglMg4l要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C。由机械能守恒定律有MvB2Mgl联立式得mMm。答案:(1)2l(2)mMm