1、第四章 直线与角4.1 多姿多彩的几何图形 形状:方的、圆的等 几何图形 大小:长度、面积、体积等 位置:相交、垂直、平行等几何体也简称体。包围着体的是面。 常见的立体图形:圆柱、圆椎、圆台、球、长方体、四面体、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)点线面体:是组成几何图形的基本元素;点动成线,线动成面,面动成体。4.2 直线、射线、线段 1、特点与表示方法:直线没有端点,向两方无限延伸,可用两个字母或小字字母表示;射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意一点表示;线段有两个端点,用两个端点来表示。2、连接两点间的线段的长度,叫做这两点之间的距离。 3、
2、经过两点有一条直线,并且只有一条直线。(两点确定一条直线)。4.3 线段的比较:叠合法或度量法;中点:将一条线段分成两条相等的线段的点称这条线段的中点;两点的所有连线中,线段做短(两点之间,线段最短)。4.4 角的度量1、 定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边。2、 1度=60分 1分=60秒 1周角=360度 1平角=180度 ;钟表上分针每分钟走6,时针每分钟走0.54.5 角的比较与运算 角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。 如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。 如果
3、两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。 等角(同角)的补角相等。即两个相等的角的补角相等,同一个角的补角相等。 等角(同角)的余角相等。即两个相等的角的余角相等,同一个角的余角相等。注:互余、互补关系只强调角度的和为特定的度数,与两个角的位置无关。4.6 作线段与角1、尺规作图:几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫做尺规作图2、作一条线段等于已知线段:(1)作一条直线L(2)在L上任取一点A,以A为圆心,以线段a的长度为半径画弧,交直线L于点B 则线段AB为所求作的线段3、作一个角等于已知角:(1)在AOB上以O为圆心,任意长为半径画弧,分别交OA、OB于点P、Q(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF,DEF即为所求作的角。