1、课时作业(七)等差数列的概念与通项公式A组(限时:10分钟)1等差数列an中,a25,d3,则a5为()A4B4C5 D6解析:a5a14d(a1d)3da23d5334.答案:B2在数列an中,a12,2an12an1,则a101的值为()A49 B50C51 D52解析:2an12an1,an1an.an1an.数列an是首项为2,公差为的等差数列a101a1(1011)d252.答案:D3在ABC中,三内角A,B,C成等差数列,则角B等于()A30 B60C90 D120解析:A,B,C成等差数列,2BAC.又ABC180,3B180,B60.答案:B4已知等差数列an中,a1a98,则
2、an_.解析:等差数列an中,a18,a98,a9a18d,d2.ana1(n1)d82(n1)102n.答案:102n5在数列an中,a11,an12an2n.设bn.(1)证明:数列bn是等差数列(2)求数列an的通项公式解:(1)证明:由已知an12an2n得bn11bn1.又b1a11,因此bn是首项为1,公差为1的等差数列(2)由(1)知数列bn的通项公式为bnn,由bn得,数列an的通项公式为ann2n1.B组(限时:30分钟)1已知an为等差数列,且a72a41,a30,则公差d等于()A2BC. D2解析:由解得:,故选B.答案:B2数列an的通项公式为an2n5,则此数列()
3、A是公差为2的递增等差数列B是公差为5的递增等差数列C是首项为7的递减等差数列D是公差为2的递减等差数列解析:an2n5,a17,d2,故选A.答案:A3已知an为等差数列,a2a812,则a5等于()A4 B5C6 D7解析:由a1da17d12可得:a14d6,即a56,故选C.答案:C4已知数列an中,an2an1(n2),且a11,则这个数列的第10项为()A18 B19C20 D21解析:an2an1(n2),anan12(n2),即d2.a11,a1019219,故选B.答案:B5数列an是首项为2,公差为3的等差数列,数列bn是首项为2,公差为4的等差数列若anbn,则n的值为(
4、)A4 B5C6 D7解析:an2(n1)33n1,bn2(n1)44n6,令anbn得3n14n6,n5.答案:B6首项为24的等差数列,从第10项起为正数,则公差的取值范围是()Ad Bd3C.d3 D.d3解析:由已知a100,且a90,即将a124代入解得d3.答案:D7在等差数列an中,a37,a5a26,则a6_.解析:由解得:,a635213.答案:138数列an中,a13,且对于任意大于1的正整数n,点(,)在直线xy0上,则an_.解析:将点(,)代入直线方程,得.由等差数列定义知是以为首项,以为公差的等差数列故(n1)n.所以an3n2.答案:3n29若xy,两个数列:x,
5、a1,a2,a3,y和x,b1,b2,b3,b4,y都是等差数列,则_.解析:由题意,可知:yx4(a2a1),yx5(b3b2),.答案:10已知等差数列an中,a5a6a715,a5a6a745,求数列an的通项公式解:设a5a6d,a7a6d,则由a5a6a715,得3a615.a65.由已知可得.解得或当a51时,d4.从而a115.an15(n1)44n19.当a59时,d4,从而a125.an25(n1)(4)4n29.11已知数列an满足a11,an0,求an.解: .2,2.数列是以1为首项,2为公差的等差数列1(n1)22n1.又an0,an(nN*)12已知数列an,a1a21,anan12(n3)(1)判断数列an是否为等差数列?说明理由;(2)求an的通项公式解:(1)当n3时,anan12,即anan12,而a2a10不满足anan12(n3),an不是等差数列(2)当n2时,令a2b11,a3b23,a4b35,anbn112(n1)12n3.又a11,an