1、第一部分 18个常见问题专项突破常考问题1函数、基本初等函数的 图象与性质 (建议用时:50分钟)1同时满足两个条件:定义域内是减函数;定义域内是奇函数的函数是()Af(x)x|x| Bf(x)x3Cf(x)sin x Df(x)解析结合各选项知定义域内是奇函数的函数有选项A,B,C中的函数,而这三个函数在定义域内是减函数的只有选项A.答案A2设函数f(x)若f(a)f(1)2,则a等于()A3 B3 C1 D1解析依题意,得f(a)2f(1)2 1.当a0时,有 1,则a1;当a0时,有 1,a1.综上所述,a1.答案D3函数f(x)log2|x|,g(x)x22,则f(x)g(x)的图象只
2、可能是()解析因为函数f(x),g(x)都为偶函数,所以f(x)g(x)也为偶函数所以图象关于y轴对称,排除A,D.f(x)g(x)(x22)log2|x|,当0x1时,f(x)g(x)0,排除B,选C.答案C4(2013浙江卷)已知x,y为正实数,则()A2lg xlg y2lg x2lg y B2lg(xy)2lg x2lg yC2lg xlg y2lg x2lg y D2lg(xy)2lg x2lg y解析2lg x2lg y2lg xlg y2lg(xy)故选D.答案D5已知定义在R上的函数yf(x)满足以下三个条件:对于任意的xR,都有f(x4)f(x);对于任意的x1,x2R,且0
3、x1f(1)f,f(4.5)f(7)f(6.5)答案A6已知f(x)ln(1x)的定义域为集合M,g(x)2x1的值域为集合N,则MN_.解析由对数与指数函数的知识,得M(1,),N(1,),故MN(1,)答案(1,)7(2013济南模拟)已知函数f(x)x3x,对任意的m2,2,f(mx2)f(x)0,f(x)在R上为增函数又f(x)为奇函数,由f(mx2)f(x)0知,f(mx2)f(x)mx2x,即mxx20,令g(m)mxx2,由m2,2知g(m)0恒成立,可得,2x.答案8已知函数yf(x)是R上的偶函数,对xR都有f(x4)f(x)f(2)成立当x1,x20,2,且x1x2时,都有
4、0,给出下列命题:f(2)0;直线x4是函数yf(x)图象的一条对称轴;函数yf(x)在4,4上有四个零点;f(2 014)0.其中所有正确命题的序号为_解析令x2,得f(24)f(2)f(2),解得f(2)0,因为函数f(x)为偶函数,所以f(2)0,正确;因为f(4x)f(4x4)f(x),f(4x)f(4x4)f(x)f(x),所以f(4x)f(4x),即x4是函数f(x)的一条对称轴,正确;当x1,x20,2,且x1x2时,都有1),若函数yg(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象(1)写出函数g(x)的解析式;(2)当x0,1)时总有f(x)g(x)
5、m成立,求m的取值范围解(1)设P(x,y)为g(x)图象上任意一点,则Q(x,y)是点P关于原点的对称点,因为Q(x,y)在f(x)的图象上,所以yloga(x1),即yloga(1x)(x1)(2)f(x)g(x)m,即logam.设F(x)loga,x0,1)由题意知,只要F(x)minm即可因为F(x)在0,1)上是增函数,所以F(x)minF(0)0.故m的取值范围是(,010已知二次函数f(x)ax2bx1(a0),F(x)若f(1)0,且对任意实数x均有f(x)0成立(1)求F(x)的表达式;(2)当x2,2时,g(x)f(x)kx是单调函数,求k的取值范围解(1)f(1)0,a
6、b10,ba1,f(x)ax2(a1)x1.f(x)0恒成立,即a1,从而b2,f(x)x22x1,F(x)(2)由(1)知,g(x)x22x1kxx2(2k)x1.g(x)在2,2上是单调函数,2或2,解得k2或k6.所以k的取值范围是(,26,)11已知函数f(x)exex(xR且e为自然对数的底数)(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使不等式f(xt)f(x2t2)0对一切x都成立?若存在,求出t;若不存在,请说明理由解(1)f(x)exx,且yex是增函数,yx是增函数,所以f(x)是增函数由于f(x)的定义域为R,且f(x)exexf(x),所以f(x)是奇函数(2)由(1)知f(x)是增函数和奇函数,f(xt)f(x2t2)0对一切xR恒成立f(x2t2)f(tx)对一切xR恒成立x2t2tx对一切xR恒成立t2tx2x对一切xR恒成立2对一切xR恒成立20t.即存在实数t,使不等式f(xt)f(x2t2)0对一切x都成立