收藏 分享(赏)

2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc

上传人:高**** 文档编号:722556 上传时间:2024-05-30 格式:DOC 页数:6 大小:155.50KB
下载 相关 举报
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第1页
第1页 / 共6页
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第2页
第2页 / 共6页
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第3页
第3页 / 共6页
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第4页
第4页 / 共6页
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第5页
第5页 / 共6页
2021-2022学年新教材高中数学 课后素养落实(五)第六章 平面向量及其应用 6.2.4 向量的数量积(含解析)新人教A版必修第二册.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课后素养落实(五)向量的数量积(建议用时:40分钟)一、选择题1给出以下五个结论:0a0;abba;a2|a|2;(ab)ca(bc);|ab|ab其中正确结论的个数为()A1B2C3D4C显然正确;(ab)c与c共线,而a(bc)与a共线,(ab)c与a(bc)不一定相等,故错误;ab是一个实数,应该有|ab|ab,故错误2已知|a|3,a与b的夹角为120,则a在b方向上的投影向量的模为()A B C2 D2A|a|3,a与b的夹角为120,|a|cos 1203,a在b方向上的投影向量的模为3若向量a,b,c,满足ab且ac,则c(a2b)()A4 B3 C2 D0Dab,ac,bc,a

2、c0,bc0,c(a2b)ac2bc0004如图所示,ABC是顶角为120的等腰三角形,且AB1,则等于()A B C DC因为ABC是顶角为120的等腰三角形,且AB1,所以BC,所以1cos 1505已知非零向量a,b满足2|a|3|b|,|a2b|ab|,则a与b的夹角的余弦值为()A B C DC|a2b|ab|(a2b)2(ab)2abb2cosa,b二、填空题6已知向量e1,e2的模分别为1,2,e1,e2的夹角为,则(e2e1)e2的值为_3由题意,可知(e2e1)e2ee1e2|e2|2|e1|e2|cos 2212cos 37已知向量|a|,ab10,|ab|5,则|b|_5

3、|a|25,|ab|5,|ab|250,即|a|2|b|22ab50,5|b|22050,|b|58若a,b均为非零向量,且(a2b)a,(b2a)b,则a,b的夹角为_由题知(a2b)a0,(b2a)b0,即|a|22ba|a|22|a|b|cos 0,|b|22ba|b|22|a|b|cos 0,故|a|2|b|2,即|a|b|,所以|a|22|a|a|cos 0,故cos ,因为 0,故三、解答题9已知|a|4,|b|3,(2a3b)(2ab)61(1)求a与b的夹角的值;(2)求|ab|解(1)(2a3b)(2ab)61,4|a|24ab3|b|261|a|4,|b|3,644ab27

4、61,ab6,cos ,又0,(2)由已知及(1)所求得,|ab|2(ab)2|a|22ab|b|2422(6)3213,|ab|10已知ab,且|a|2,|b|1,若有两个不同时为零的实数k,t,使得a(t3)b与katb垂直,试求k的最小值解ab,ab0由已知得a(t3)b(katb)0,ka2t(t3)b20|a|2,|b|1,4kt(t3)0,k(t23t)故当t时,k取最小值,为1(多选题)设a,b,c是任意的非零向量,且它们相互不共线,则下列结论正确的是()Aacbc(ab)cB(bc)a(ca)b不与c垂直C|a|b|ab|D(3a2b)(3a2b)9|a|24|b|2ACD根据

5、向量积的分配律知A正确;因为(bc)a(ca)bc(bc)(ac)(ca)(bc)0,所以(bc)a(ca)b与c垂直,B错误;因为a,b不共线,所以|a|,|b|,|ab|组成三角形三边,所以|a|b|ab|成立,C正确;D正确2如图,在ABC中,ADAB,|1,则等于()A2 B C DD|cosDAC|cos|sinBAC|sin B|sin B|3已知|a|b|c|1且满足3amb7c0,其中a,b的夹角为60,则实数m_5或8因为3amb7c0,所以3amb7c,所以(3amb)2(7c)2,即9m26mab49,又ab|a|b|cos 60,所以m23m400,解得m5或m84已知

6、非零向量a,b满足|a|1,且(ab)(ab)(1)|b|_;(2)当ab时,向量a与a2b的夹角的值为_(1)(2)(1)因为(ab)(ab),即a2b2,即|a|2|b|2,所以|b|2|a|21,故|b|(2)因为|a2b|2|a|24ab|2b|21111,故|a2b|1又因为a(a2b)|a|22ab1,所以cos ,又0,故在四边形ABCD中,已知AB9,BC6,2(1)若四边形ABCD是矩形,求的值;(2)若四边形ABCD是平行四边形,且6,求与夹角的余弦值解(1)因为四边形ABCD是矩形,所以0,由2,得,所以()()22368118(2)由题意,所以22361818又6,所以186,所以36设与的夹角为,又|cos 96cos 54cos ,所以54cos 36,即cos 所以与夹角的余弦值为- 6 -

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3