1、23.4平面向量共线的坐标表示预习课本P98100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线? 平面向量共线的坐标表示前提条件a(x1,y1),b(x2,y2),其中b0结论当且仅当x1y2x2y10时,向量a、b(b0)共线点睛(1)平面向量共线的坐标表示还可以写成(x20,y20),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a0,b0时,ab,此时x1y2x2y10也成立,即对任意向量a,b都有:x1y2x2y10ab.1判断下列命题是否正确(正确的打“”,错误的打“”)(1)已知a(x1,y1),b(x2,y2),若ab,则必有x1y2x2y1.()(2)向
2、量(2,3)与向量(4,6)反向()答案:(1)(2)2若向量a(1,2),b(2,3),则与ab共线的向量可以是()A(2,1)B(1,2)C(6,10)D(6,10)答案:C3已知a(1,2),b(x,4),若ab,则x等于()A B. C2 D2答案:D4已知向量a(2,3),ba,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为_答案:向量共线的判定典例(1)已知向量a(1,2),b(,1),若(a2b)(2a2b),则的值等于()A.B.C1D2(2)已知A(2,1),B(0,4),C(1,3),D(5,3)判断与是否共线?如果共线,它们的方向相同还是相反?解析(1)法一:
3、a2b(1,2)2(,1)(12,4),2a2b2(1,2)2(,1)(22,2),由(a2b)(2a2b)可得2(12)4(22)0,解得.法二:假设a,b不共线,则由(a2b)(2a2b)可得a2b(2a2b),从而方程组显然无解,即a2b与2a2b不共线,这与(a2b)(2a2b)矛盾,从而假设不成立,故应有a,b共线,所以,即.答案A(2)解(0,4)(2,1)(2,3),(5,3)(1,3)(4,6),(2)(6)340,共线又2,方向相反综上,与共线且方向相反向量共线的判定方法(1)利用向量共线定理,由ab(b0)推出ab.(2)利用向量共线的坐标表达式x1y2x2y10直接求解活
4、学活用已知a(1,2),b(3,2),当k为何值时,kab与a3b平行,平行时它们的方向相同还是相反?解:kabk(1,2)(3,2)(k3,2k2),a3b(1,2)3(3,2)(10,4),若kab与a3b平行,则4(k3)10(2k2)0,解得k,此时kabab(a3b),故kab与a3b反向k时,kab与a3b平行且方向相反三点共线问题典例(1)已知(3,4),(7,12),(9,16),求证:A,B,C三点共线;(2)设向量(k,12),(4,5),(10,k),当k为何值时,A,B,C三点共线?解(1)证明:(4,8),(6,12),即与共线又与有公共点A,A,B,C三点共线(2)
5、若A,B,C三点共线,则,共线,(4k,7),(10k,k12),(4k)(k12)7(10k)0.解得k2或k11.有关三点共线问题的解题策略(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;(2)使用A,B,C三点共线这一条件建立方程求参数时,利用,或,或都是可以的,但原则上要少用含未知数的表达式活学活用设点A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,与共线且方向相同,此时,A,B,C,D能否在同一条直线上?解:(2x,2)(x,1)(x,1),(1,2x)(2x,2)(12x,2x2),(5,3x)(1,2x
6、)(4,x)由与共线,所以x214,所以x2.又与方向相同,所以x2.此时,(2,1),(3,2),而2231,所以与不共线,所以A,B,C三点不在同一条直线上所以A,B,C,D不在同一条直线上向量共线在几何中的应用题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,ADAB,AB2AD2CD,过点C作CEAB于E,用向量的方法证明:DEBC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系, 设| |1,则| |1,|2.CEAB,而ADDC,四边形AECD为正方形,可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(1,1)(1,1)(0,
7、0)(1,1),(0,1)(1,0)(1,1),即DEBC.题点二:几何形状的判断2已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形证明:由已知得,(4,3)(1,0)(3,3),(0,2)(2,4)(2,2)3(2)3(2)0,与共线(1,2),(2,4)(4,3)(2,1),(1)12(2)0,与不共线四边形ABCD是梯形(2,1),(1,2),|,即BCAD.故四边形ABCD是等腰梯形题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标解:法一:设tt(4,4)(4t,4t)
8、,则(4t,4t)(4,0)(4t4,4t),(2,6)(4,0)(2,6)由,共线的条件知(4t4)64t(2)0,解得t.(3,3)P点坐标为(3,3)法二:设P(x,y),则(x,y),(4,4),共线,4x4y0.又(x2,y6),(2,6),且向量,共线,6(x2)2(6y)0.解组成的方程组,得x3,y3,点P的坐标为(3,3)应用向量共线的坐标表示求解几何问题的步骤层级一学业水平达标1下列向量组中,能作为表示它们所在平面内所有向量的基底的是()Ae1(0,0),e2(1,2)Be1(1,2),e2(5,7)Ce1(3,5),e2(6,10)De1(2,3),e2解析:选BA中向量
9、e1为零向量,e1e2;C中e1e2,e1e2;D中e14e2,e1e2,故选B.2已知点A(1,1),B(4,2)和向量a(2,),若a,则实数的值为()AB.C. D解析:选C根据A,B两点的坐标,可得(3,1),a,2130,解得,故选C.3已知A(2,1),B(3,1),则与平行且方向相反的向量a是()A(2,1) B(6,3)C(1,2) D(4,8)解析:选D(1,2),向量(2,1)、(6,3)、(1,2)与(1,2)不平行;(4,8)与(1,2)平行且方向相反4已知向量a(x,2),b(3,1),若(ab)(a2b),则实数x的值为()A3 B2C4 D6解析:选D因为(ab)
10、(a2b),ab(x3,1),a2b(x6,4),所以4(x3)(x6)0,解得x6.5设a,b,且ab,则锐角为()A30 B60C45 D75解析:选Aab,tan cos 0,即sin ,30.6已知向量a(3x1,4)与b(1,2)共线,则实数x的值为_解析:向量a(3x1,4)与b(1,2)共线,2(3x1)410,解得x1.答案:17已知A(1,4),B(x,2),若C(3,3)在直线AB上,则x_.解析:(x1,6),(4,1),(x1)240,x23.答案:238已知向量a(1,2),b(2,3),若ab与ab共线,则与的关系是_解析:a(1,2),b(2,3),ab(1,2)
11、(2,3)(1,5),ab(1,2)(2,3)(2,23),又(ab)(ab),1(23)5(2)0,.答案:9已知A,B,C三点的坐标为(1,0),(3,1),(1,2),并且,求证:.证明:设E,F的坐标分别为(x1,y1)、(x2,y2),依题意有(2,2),(2,3),(4,1),(x11,y1)(2,2)点E的坐标为.同理点F的坐标为,.又(1)40,.10已知向量a(2,1),b(1,1),c(5,2),mbc(为常数)(1)求ab;(2)若a与m平行,求实数的值解:(1)因为a(2,1),b(1,1),所以ab(2,1)(1,1)(3,2)(2)因为b(1,1),c(5,2),所
12、以mbc(1,1)(5,2)(5,2)又因为a(2,1),且a与m平行,所以2(2)5,解得1.层级二应试能力达标1已知平面向量a(x,1),b(x,x2),则向量ab()A平行于x轴B平行于第一、三象限的角平分线C平行于y轴D平行于第二、四象限的角平分线解析:选C因为ab(0,1x2),所以ab平行于y轴2若A(3,6),B(5,2),C(6,y)三点共线,则y()A13B13C9 D9解析:选DA,B,C三点共线,而(8,8),(3,y6),8(y6)830,即y9.3已知向量a(1,0),b(0,1),ckab(kR),dab,如果cd,那么()Ak1且c与d同向Bk1且c与d反向Ck1
13、且c与d同向Dk1且c与d反向解析:选Da(1,0),b(0,1),若k1,则cab(1,1),dab(1,1),显然,c与d不平行,排除A、B.若k1,则cab(1,1),dab(1,1),即cd且c与d反向4已知平行四边形三个顶点的坐标分别为(1,0),(3,0),(1,5),则第四个顶点的坐标是()A(1,5)或(5,5)B(1,5)或(3,5)C(5,5)或(3,5)D(1,5)或(5,5)或(3,5)解析:选D设A(1,0),B(3,0),C(1,5),第四个顶点为D,若这个平行四边形为ABCD,则,D(3,5);若这个平行四边形为ACDB,则,D(5,5);若这个平行四边形为ACB
14、D,则,D(1,5)综上所述,D点坐标为(1,5)或(5,5)或(3,5)5已知(6,1),(x,y),(2,3),则x2y的值为_解析:(6,1)(x,y)(2,3)(x4,y2),(x4,y2)(x4,y2),x(y2)(x4)y0,即x2y0.答案:06已知向量(3,4),(6,3),(5m,3m)若点A,B,C能构成三角形,则实数m应满足的条件为_解析:若点A,B,C能构成三角形,则这三点不共线,即与不共线(3,1),(2m,1m),3(1m)2m,即m.答案:m7已知A(1,1),B(3,1),C(a,b)(1)若A,B,C三点共线,求a与b之间的数量关系;(2)若2,求点C的坐标解:(1)若A,B,C三点共线,则与共线(3,1)(1,1)(2,2),(a1,b1),2(b1)(2)(a1)0,ab2.(2)若2,则(a1,b1)(4,4),点C的坐标为(5,3)8.如图所示,在四边形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直线AC与BD交点P的坐标解:设P(x,y),则(x1,y),(5,4),(3,6),(4,0)由B,P,D三点共线可得(5,4)又(54,4),由于与共线得,(54)6120.解得,P的坐标为.