1、1设直线a与平面平行,则必有 ()A在内不存在与a平行的直线B在内存在与a平行的唯一直线C在内有无数条直线与a平行D在内仅有一条直线与a是异面直线解析:直线a与平面平行,则过这条直线有无数个平面与已知平面相交,交线与直线a平行,故选项C正确;在平面内有无数条直线与a是异面直线答案:C2经过平面外的两点作该平面的平行平面,可以作 ()A0个B1个C0个或1个 D1个或2个解析:当这两点连线与该面相交时,这时作不出符合题意的平面,当这两点连线与该面平行时可以作惟一的一个符合题意的平面答案:C3平面与平面平行的条件可以是 ()A内有无穷多条直线都与平行B直线a,a且直线a不在内,也不在内C直线a,直
2、线b且a,bD内的任意直线都与平行解析:如图,内所有平行交线l的直线都平行于,故排除A;若al,且a,a,则a,a,故排除B;若a,al,b,bl,则有a,b,排除C.答案:D4在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是_平面E1FG1与平面EGH1平面FHG1与平面F1H1G平面F1H1H与平面FHE1平面E1HG1与平面EH1G解析:画出相应的截面如图所示,即可得答案答案:5如图,直线a平面,点A在另一侧,点B,C,Da.线段AB,AC,AD分别交于点E,F,G.若BD4,CF4,AF5,则EG_.解析:Aa,则点A与直线a确定一个平面,即平面ABD.因为a,且平面ABDEG,所以aEG,即BDEG.所以,又,所以.于是EG.答案:6如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:GH平面PAD.证明:如图所示,连接AC交BD于点O,连接MO.ABCD是平行四边形,O是AC的中点,又M是PC的中点,PAMO,而AP平面BDM,OM平面BDM.PA平面BMD,又PA平面PAHG,平面PAHG平面BMDGH,PAGH.又PA平面PAD,GH平面PAD,GH平面PAD.