1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在中,连接BC,CD,则的度数是()A45B50C55D802、
2、已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为()A7B8C9D103、下列说法中正确的是()A三角形的三条中线必交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部4、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D15、如图,则A45B55C35D65二、多选题(5小题,每小题4分,共计20分)1、如图,在中,点,分别是边,上的点,且,相交于点,若点是的重心,则以下结论,其中一定正确结论有()A线段,是的三条角平分线B的面积是面积的一半C图中与面积相等的三角形有5个D的面积是面积的2、将一
3、个三角形纸片剪开分成两个三角形,这两个三角形可能是()A都是直角三角形B都是钝角三角形C都是锐角三角形D是一个直角三角形和一个钝角三角形3、如图,下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD4、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE5、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,四边形ABCD四边形
4、ABCD,则A的大小是_2、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_3、如图,ABCDBE,ABC的周长为30,AB9,BE8,则AC的长是_4、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)5、如图,是的中线,点F在上,延长交于点D若,则_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由2、已知:
5、如图,点A、B、C、D在一条直线上,(1)求证:;(2)若,求的度数3、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.4、将一副三角尺叠放在一起:(1)如图,若142,请计算出CAE的度数;(2)如图,若ACE2BCD,请求出ACD的度数5、在中,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接(1)当点,都在线段上时,如图,求证:; 线 封 密 内 号学级年名姓 线 封 密 外 (2)当点在线段的延长线上,点在线段的延长线上时,如图;当点在线段的延长线上,点在线段的延长线上时,如图,直接写出线段,之间的
6、数量关系,不需要证明-参考答案-一、单选题1、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型2、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+1,即3x5,x为整数,x的值为4三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围3、A【解析】【
7、分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键4、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线
8、定义是解答的关键5、B【解析】【分析】求出BE=CF,根据SSS证出AEBDFC,推出C=B,根据全等三角形的判定推出即可【详解】解答:证明:,BE=CF,在AEB和DFC中,AEBDFC(SSS),C=B=55.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出AEBDFC,注意:全等三角形的对应边相等,对应角相等二、多选题1、BCD【解析】【分析】根据三角形重心的性质分别判断即可;【详解】三角形的重心是三角形三条边中线的交点,线段,是的三条中线,不是角平分线,故A错误;三角形的重心是三角形三条边中线的交点, 线 封 密 内 号学级年名姓 线 封 密 外 的面积是面积的一半,故B正
9、确;三角形的重心是三角形三条边中线的交点,图中与面积相等的三角形有5个,故C正确;三角形的重心是三角形三条边中线的交点,重心到顶点的距离与重心到对边中点的距离之比是,的面积是面积的,故D正确;故选BCD【考点】本题主要考查了重心的定义理解,准确分析判定是解题的关键2、ABD【解析】【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形【详解】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形如图,钝角三角形沿虚线剪开即可得到两个钝角三角形如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角
10、形综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形故选:ABD【考点】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图3、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考
11、查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和4、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,
12、注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中5、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大三、填空题1、95【解析】【分析】根据两个多边形全等,则对应角相等四边形以及内角和即
13、可完成【详解】 线 封 密 内 号学级年名姓 线 封 密 外 四边形ABCD四边形ABCDD=D=130四边形ABCD的内角和为360A=360-B-C-D=95故答案为:95【考点】本题考查了多边形全等的性质、多边形的内角和定理,掌握多边形全等的性质是关键2、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键3、13【解析】【分析】
14、根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案【详解】解:ABCDBE,BE8,BCBE8,ABC的周长为30,AB+AC+BC30,AC30ABBC13,故答案为:13【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质4、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC; 线 封 密 内 号学级年名姓 线 封 密 外 当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为AD
15、AC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件5、【解析】【分析】连接ED,由是的中线,得到,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质解得,据此解题即可【详解】解:连接ED是的中线,设,与是等高三角形,故答案为:【考点】本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键四、解答题1、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EA
16、O,根据等腰三角形的性质推出即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 (1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC2、(1)见解析;(2)60【解析】【分析】(1)首先利用平行线的性质得出,A=FBD,根据AB=CD即可得出AC=BD,进而得出EACFBD即可;(2)根据全等三角形的性质和三角形内角和解答即可【详解】证明:(1)EAFB,A=
17、FBD,AB=CD,AB+BC=CD+BC,即AC=BD,在EAC与FBD中,EACFBD(SAS)(2)EACFBD,ECA=D=80,A=40,E=180-40-80=60,答:E的度数为60 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等根据已知得出EACFBD是解题关键3、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)
18、证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL4、(1)CAE18;(2)ACD120【解析】【分析】(1)由题意根据BAC90列出关于1、2的方程
19、求解即可得到2的度数,再根据同角的余角相等求出CAE2,从而得解;(2)根据ACB和DCE的度数列出等式求出ACEBCD30,再结合已知条件求出BCD,然后由ACDACB+BCD并代入数据计算即可得解【详解】解:(1)BAC90,1+290,142,42+290,218,又DAE90,1+CAE2+190,CAE218;(2)ACE+BCE90,BCD+BCE60,ACEBCD30,又ACE2BCD,2BCDBCD30,BCD30,ACDACB+BCD90+30120 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键5、(1)见解析;(2)图:;图:【解析】【分析】(1)过点作交的延长线于点证明,根据全等三角形的性质可得,再证,由此即可证得结论;(2)图:,类比(1)中的方法证明即可;图:,类比(1)中的方法证明即可【详解】(1)证明:如图,过点作交的延长线于点0,在和中,在和中,(2)图:证明:过点作交于点 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,图:证明:如图,过点作交的延长线于点, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,【考点】本题是全等三角形的综合题,正确作出辅助线,构造全等三角形是解决问题的关键