1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟考试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC
2、点BD点A2、如图,ABC中,B=2A,ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为()A6B7C8D93、如图,已知,用尺规作它的角平分线如图,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求下列叙述不正确的是()AB作图的原理是构造三角形全等C由第二步可知,D的长4、如图,AD是的角平分线,垂足为F,和的面积分别为60和35,则的面积为A25BCD5、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线
3、上,则COF的度数是() 线 封 密 内 号学级年名姓 线 封 密 外 A74B76C84D86二、多选题(5小题,每小题4分,共计20分)1、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO2、下列每组中的两个图形,不是全等图形的是()ABCD3、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD4、如图,下列结论正确的是()ABCD5、(多选)如图,在RtABC中,BAC90,ACQBCQ,ADBC,AECE,AD与CQ交于点N,BE与CQ交于点M,下面说法正确的是()ASABESBCEBAQNA
4、NQCBAD2ACQDADBCABAC第卷(非选择题 65分) 线 封 密 内 号学级年名姓 线 封 密 外 三、填空题(5小题,每小题5分,共计25分)1、在ABC中,将B、C按如图方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕若A80,则MGE_2、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是_(写出一个即可),3、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90,且CMDM已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是_秒4、已知a,b,c是A
5、BC的三边长,a,b满足|a7|+(b1)2=0,c为奇数,则c=_5、已知三角形的三边长为4、x、11,化简_四、解答题(5小题,每小题8分,共计40分)1、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数2、已知a,b,c是的三边长,且,若三角形的周长是小于18的偶数(1)求c的值;(2)判断的形状3、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN4、如图,正方形ABCD
6、中,E、F分别在边BC、CD上,且EAF45,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路例如图中ADF与ABG可以看作绕点A旋转90的关系这可以证明结论“EFBEDF”,请补充辅助线的作法,并写出证明过程(1)延长CB到点G,使BG ,连接AG;(2)证明:EFBEDF5、在中,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接 线 封 密 内 号学级年名姓 线 封 密 外 (1)当点,都在线段上时,如图,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图;当点在线段的延长线上,点在线段的延长线上时,如图,直接写出线段,
7、之间的数量关系,不需要证明-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【解析】【分析】如图,在上截取 连接证明利用全等三角形的性质证明 求解 再证明 从而可得答案【详解】解:如图,在上截取 连接 平分 线 封 密 内 号学级年名姓 线 封 密 外 故选:【考点】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键3、D【解析】【分析】根据用尺规作图法画已知角的角平分线的基本步骤判断即可【详解】解:A、以a为半
8、径画弧,故正确B、根据作图步骤可知BD=BE,PD=PE,BP=BP,BDPBEP(SSS),故正确C、分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键4、D【解析】【分析】过点D作DHAC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明RtADF和RtADH全等,RtDEF和RtDGH全等,然后根据全等三角形的面积相等列方程求解即可【详解】如图,过点D作于H,是的角平分线,在和中,在和
9、中,和的面积分别为60和35,=12.5,故选D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键5、C【解析】【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【考点】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识二、多选题1、AD【解析】【分析】由已知可知一边一角对应相等,再结
10、合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故本选项符合题意;B、若 ,是边边角,不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键2、ABD【解析】【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】解:A、大小不同,不能重合,不是全等图形,
11、符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意;D、正五边形和正六边形不是全等图形,符合题意;故选:ABD 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键3、ABC【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形
12、的判定方法边角边、角边角、边边边是解题的关键4、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和5、ABCD【解析】【分析】根据三角形中位线的概念利用等底同高三角形面积相等判断;结合三角形外角的性质和同角的余角相等判断;根据同
13、角的余角相等和角平分线的定义判断;利用三角形的面积公式判断【详解】解:AECE, 线 封 密 内 号学级年名姓 线 封 密 外 ABE与BCE等底同高,SABESBCE,故A正确;在RtABC中,BAC90,ADBC,ABC+ACB=90,BAD+ABC=90,ABC=DAC,BAD=ACD,AQN=ABC+BCQ,ANQ=DAC+ACQ,ACQBCQ,AQNANQ,故B正确;BADACD=2ACQ,故C正确;,故D正确,故选:ABCD【考点】此题考查了三角形中线的性质,角平分线的定义,同角的余角相等等知识,题目难度不大,理解相关的概念正确推理论证是解题的关键三、填空题1、80【解析】【分析】
14、由折叠的性质可知:BMGB,CEGC,根据三角形的内角和为180,可求出BC的度数,进而得到MGBEGC的度数,问题得解【详解】解:线段MN、EF为折痕,BMGB,CEGC,A80,BC18080100,MGBEGCBC100,MGE18010080,故答案为:80【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到MGBEGC的度数2、4(答案不唯一,在3x9之内皆可)【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果【详解
15、】解:根据三角形的三边关系,得:第三边应大于6-3=3,而小于6+3=9,故第三边的长度3x9故答案为:4(答案不唯一,在3x9之内皆可)【考点】此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可3、故答案为 线 封 密 内 号学级年名姓 线 封 密 外 584【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程速度列式计算即可【详解】解:根据题意可得:,又在和中时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键4、7【解析】【分析】根据非负数
16、的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值【详解】a,b满足|a7|+(b1)2=0,a7=0,b1=0,解得a=7,b=1,71=6,7+1=8, 又c为奇数,c=7,故答案为7【考点】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系5、11【解析】【分析】根据三角形三边关系可求出x的取值范围,即可求解【详解】三角形的三边为4、x、11,11-4x11+4, 线 封 密 内 号学级年名姓 线 封 密 外 ,故答案为:11【考点】本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用
17、三角形三边关系求出x的取值范围是解答本题的关键四、解答题1、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,
18、直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键2、(1)4或6;(2)等腰三角形【解析】【分析】(1)根据三角形三边关系和周长的最小值列式计算即可;(2)根据(1)可得c,根据已知条件得到a=c,即可得到结果;【详解】(1)的周长为,且周长小于18,即,又三角形的周长是小于18的偶数,即为偶数,c为小于8的偶数,则c可以是2,4,6当时,不能构成三角形,故舍去,c的值为4或6(2)由(1)得当时,有;当时,有,为等腰三角形【考点】本题主要考查了三角形三边关系及三角形形状判断的知识点,准确理解是解题的关键3、见解析.【解析】【分析】首先由已知证明R
19、tBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得 线 封 密 内 号学级年名姓 线 封 密 外 到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.4、(1)DF;(2)见解析【解析】【分析】(1)由于ADF与ABG可以看作绕点A旋转90的关系,根据旋转的性
20、质知BG=DF,从而得到辅助线的做法;(2)先证明ADFABG,得到AG=AF,GAB=DAF,结合EAF45,易知GAE=45,再证明AGEAFE即可得到EFGE=BE+GB=BEDF【详解】解:(1)根据旋转的性质知BG=DF,从而得到辅助线的做法:延长CB到点G,使BG=DF,连接AG;(2)四边形ABCD为正方形,AB=AD,ADF=ABE=ABG=90,在ADF和ABG中ADFABG(SAS),AF=AG,DAF=GAB,EAF=45,DAF+EAB=45,GAB+EAB=45,GAE=EAF =45,在AGE和AFE中0ADFABG(SAS),GE=EF,EFGE=BE+GB=BE
21、DF【考点】本题属于四边形综合题,主要考查正方形的性质及全等三角形的判定和性质等知识,解题的关键是学会利用旋转方法提示构造全等三角形,属于中考常考题型5、(1)见解析;(2)图:;图:【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)过点作交的延长线于点证明,根据全等三角形的性质可得,再证,由此即可证得结论;(2)图:,类比(1)中的方法证明即可;图:,类比(1)中的方法证明即可【详解】(1)证明:如图,过点作交的延长线于点0,在和中,在和中,(2)图:证明:过点作交于点 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,图:证明:如图,过点作交的延长线于点, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,【考点】本题是全等三角形的综合题,正确作出辅助线,构造全等三角形是解决问题的关键