1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考试练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的
2、人数为( )A9人B10人C11人D12人2、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()Ax(262x)=80Bx(242x)=80C(x1)(262x)=80D(x-1)(252x)=803、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D24、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.65、下列图形中,既是轴对称图形,又是中心对称图
3、形的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB的长为xm,则下列各方程中,不符合题意的是()Ax(76x)672Bx(762x)672Cx(762x)672Dx(76x)6722、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2=x293、已知关于的方程,下列判断正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A当时,方程有两个正
4、实数根B当时,方程有两个不等实根C当时,方程无解D不论为何值时,方程总有实数根4、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()ABCD5、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列结论中正确的是()ABC关于x的一元二次方程的两根分别为和D若点(2,m),(5,n)在抛物线上,则第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_2、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,
5、CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_3、二次函数的最大值是_4、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_5、问题背景:如图,将绕点逆时针旋转60得到,与交于点,可推出结论:问题解决:如图,在中,点是内一点,则点到三个顶点的距离和的最小值是_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、解下列方程:(1);(2)2、解下列方程(1)x22x0;(
6、2)2x23x103、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元4、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元
7、)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?5、为增加农民收入,助力乡村振兴某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8x40)满足的函数图象如图所示(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润-参考答案-一、单选
8、题1、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】 线 封 密 内 号学级年名姓 线 封 密 外 考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.2、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2
9、x)m由题意得:x(26-2x)=80故答案为A【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键3、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解4、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解
10、】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB5、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻
11、找对称中心,旋转180度后与原图重合二、多选题1、BCD【解析】【分析】本题可根据题意分别用x表示BC或AD的长,再根据面积公式列出方程即可【详解】解:设栅栏AB的长为xm,依题意得: ,而矩形面积 ,不符合题意的方程有BCD故选:BCD【点睛】考查一元二次方程的应用,解题的关键是读懂题目,找到题目中的等量关系,列方程即可2、AC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x
12、的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【点睛】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程3、AC【解析】【分析】根据根的判别式代入k值计算即可得到答案【详解】解:A、当时,解得,选项说法正确,符合题意;B、当时,所以方程无实数根,选项说法错误,不符合题意;C、当时,所以方程无解,选项说法正确,符合题意;D、不论为何值时,方程不一定有实数根,选项说法错误,不符合题意;故选AC【点
13、睛】本题考查了一元二次方程的判别式,解题的关键是熟练掌握一元二次方程跟的判别与方程解得关系4、AB 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据轴对称图形(如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合)和中心对称图形(把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合)的定义进行判断【详解】A选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;B选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;C选项:
14、可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意;D选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意故选:AB【点睛】考查中心对称图形和轴对称图形的概念,解题关键是熟记其概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程
15、根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选项是否正确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函数对称性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,
16、所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二次函数与一元二次方程的关系,二次函数图象的对称性等相关知识点,牢记相关知识点并能灵活应用是解题的关键三、填空题1、 或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值为0,1,2 线 封 密 内 号学级年名姓 线 封 密 外 当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该
17、区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型2、 1 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1)连接AO,DO,四边形ABCD是正方形,O是中心,故答案为:1; 线 封 密 内 号学级年名姓 线 封 密 外 (2)设,
18、则, , 在中,当时,EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键3、8【解析】【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值8故答案为8【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.4、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(1
19、00-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.5、【解析】【分析】如图,将MOG绕点M逆时针旋转60,得到MPQ,易知MOP为等边三角形,继而得到点O到三顶点的距离为:ONOMOGONOPPQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ONOMOG最小,此时,NMQ75+60135,过Q作QANM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将MOG绕点M逆时针旋转60,得到MPQ,显然MOP为等边三角形,OMOGOPPQ,点O到三顶点的距离为:ONO
20、MOGONOPPQ,当点N、O、P、Q在同一条直线上时,有ONOMOG最小, 线 封 密 内 号学级年名姓 线 封 密 外 此时,NMQ75+60135,过Q作QANM交NM的延长线于A,则MAQ=90,AMQ180-NMQ=45,MQMG4,AQAMMQcos45=4,NQ,故答案为.【考点】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.四、解答题1、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次
21、方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键2、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1) 线 封 密 内 号学级年名姓 线 封 密 外 原方程左边因式分解,得:,即有:x12,x20;(2),【点睛】本题考查了用因式分解法
22、和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键3、 (1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利销售的千克数总利润,列出方程解答即可;(3)利用每天总毛利润税费人工费水电房租费每天总纯利润,列出方程解答即可(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x10时,y600,当x11时,y60020580,由题意得,解得所以销量y与盈利x元之间的关系为y20x+800,当x17时,y460,则每天的毛利
23、润为174607820元;(2)解:设每千克盈利x元,由(1)可得销量为(20x+800)千克,由题意得x(20x+800)7500,解得:x125,x215,要使得顾客得到实惠,应选x15,每千克应涨价15105元;(3)解:设每千克盈利x元,由题意得x(20x+800)10%x(20x+800)1.5(20x+800)3006000,解得:x125,x2,则每千克应涨价251015元或10元【点睛】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键 线 封 密 内 号学级年名姓 线 封 密 外 4、 (1)y10x+540;(2)当销售单价定为
24、37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为ykx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润每个遮阳伞的利润销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解:设一次函数关系式为ykx+b,由题意可得:,解得:,函数关系式为y10x+540;(2)解:由题意可得:w(x20)y(x20)(10x+540)10(x37)2+2890,100,二次函数开口向下,当x37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大
25、利润是2890元【点睛】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键5、(1);(2)最大利润为3840元【解析】【分析】(1)分为8x32和32x40求解析式;(2)根据“利润(售价成本)销售量”列出利润的表达式,在根据函数的性质求出最大利润【详解】解:(1)当8x32时,设ykxb(k0),则,解得:,当8x32时,y3x216,当32x40时,y120,;(2)设利润为W,则:当8x32时,W(x8)y(x8)(3x216)3(x40)23072,开口向下,对称轴为直线x40,当8x32时,W随x的增大而增大,x32时,W最大2880, 线 封 密 内 号学级年名姓 线 封 密 外 当32x40时,W(x8)y120(x8)120x960,W随x的增大而增大,x40时,W最大3840,38402880,最大利润为3840元【点睛】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值