收藏 分享(赏)

2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx

上传人:a**** 文档编号:711982 上传时间:2025-12-13 格式:DOCX 页数:21 大小:723.32KB
下载 相关 举报
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第1页
第1页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第2页
第2页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第3页
第3页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第4页
第4页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第5页
第5页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第6页
第6页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第7页
第7页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第8页
第8页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第9页
第9页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第10页
第10页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第11页
第11页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第12页
第12页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第13页
第13页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第14页
第14页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第15页
第15页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第16页
第16页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第17页
第17页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第18页
第18页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第19页
第19页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第20页
第20页 / 共21页
2022年解析卷人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(含答案详解).docx_第21页
第21页 / 共21页
亲,该文档总共21页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1

2、B2C1D22、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D1803、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2个D1个或2个4、若关于的一元二次方程的两根分别为,则二次函数的对称轴为直线()ABCD5、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米

3、,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD二、多选题(5小题,每小题4分,共计20分)1、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2=x292、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( )Ab24ac0B4a2b+c0C2cb=3Da+3=c3、下列图案中,是中心对称图形的是() 线 封 密 内 号学级年名姓 线

4、 封 密 外 ABCD4、若是方程的一个根,则的值是()A1BC3D5、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(1,0),(3,0)则下列结论中正确的有()Aabc0Bb24ac0C当x1x20时,y1y2D当1x3时,y0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知方程的一根为,则方程的另一根为_2、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_3、从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠

5、的最大高度是_ 4、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_四、解答题(5小题,每小题8分

6、,共计40分)1、如图,矩形ABCD中,AB2 cm,BC3 cm,点E从点B沿BC以2 cm/s的速度向点C移动,同时点F从点C沿CD以1 cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动当AEF是以AF为底边的等腰三角形时,求点E运动的时间 线 封 密 内 号学级年名姓 线 封 密 外 2、判断2、5、-4是不是一元二次方程的根3、解方程(1)2x24x10 (2)3x(x1)22x4、解方程(组):(1)(2);(3)x(x7)8(7x).5、已知抛物线ymx22mx3.(1)若抛物线的顶点的纵坐标是2,求此时m的值;(2)已知当m0时,无论m为其他何值,每一条

7、抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.-参考答案-一、单选题1、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解2、C【解析】【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键3、D【解析】【分析】 线 封 密 内 号学级年名姓

8、线 封 密 外 根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.4、C【解析】【分析】根据两根之和公式可以求出对称轴公式【详解】解:一元二次方程ax2bxc0的两个根为2和4,x1x2 2二次函数的对称轴为x21故选:C【考点】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用5、A【解析】【分析

9、】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经过A、B、C三点,解得: ,排球运动路线的函数解析式为,故选:A 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次

10、函数的一般式是解题的关键二、多选题1、AC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【点睛】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2

11、;(3)是整式方程2、ABC【解析】【分析】根据抛物线的图象与性质即可判断【详解】抛物线与x轴有两个交点,0,b2-4ac0,故A选项错误;x=-2时,y0,x=-2时,y=4a-2b+c0,故B选项错误;顶点为(-1,3),y=a-b+c=3,把代入得,化简得,故C选项错误;把代入得,化简得,故D选项正确;不正确的是ABC;故选:ABC【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型3、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可【详解】、是中心对称图形

12、,选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是中心对称图形,选项正确故选:ABD【点睛】本题考查中心对称图形的定义,牢记定义是解题关键4、AD【解析】【分析】把代入方程中,得到关于的一元二次方程,然后解方程即可【详解】解:把代入方程中,得:,解得:,所以的值为1或,故选AD【点睛】本题考查了一元二次方程的解,解题的关键是能得出关于的一元二次方程5、ABC【解析】【分析】首先根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出A的正误;抛物线与x轴有两个不同的交点,则=b2-4ac0,故B正确;根

13、据二次函数的性质即可判断出C的正误;由图象可知:当-1x3时,y0,即可判断出D的正误【详解】解:根据图象可得:抛物线开口向上,则a0抛物线与y交与负半轴,则c0,对称轴:x=-0,b0,abc0,故A正确;它与x轴的两个交点分别为(-1,0),(3,0),则=b2-4ac0,故B正确抛物线与x轴的两个交点分别为(-1,0),(3,0),对称轴是直线x=1,抛物线开口向上,当x1时,y随x的增大而减小,当x1x20时,y1y2;故C正确;由图象可知:当-1x3时,y0,故D错误;故正确的有ABC故选ABC【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口

14、方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c) 线 封 密 内 号学级年名姓 线 封 密 外 三、填空题1、【解析】【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键2、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标

15、都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键3、3【解析】【分析】把二次函数化为顶点式,进而即可求解【详解】解:,当x=1时,故答案是:3【考点】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键4、【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即, 线

16、 封 密 内 号学级年名姓 线 封 密 外 据此易得故答案为【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键5、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到

17、一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键四、解答题1、(6)s【解析】【分析】设点E运动的时间是x秒根据题意可得方程,解方程即可得到结论【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设点E运动的时间是x s根据题意可得22(2x)2(32x)2x2,解这个方程得x16,x26,321.5(s),212(s),两点运

18、动了1.5s后停止运动x6答:当AEF是以AF为底边的等腰三角形时,点E运动的时间是(6)s【点睛】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用2、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.3、 (1) x11+ ,x

19、21- ;(2) ,【解析】【分析】(1)用配方法求解即可;(2)先移项,然后用因式分解法求解即可【详解】(1)2x24x10,移项得:2x24x1,二次项系数化为1得:,配方得:,(x1)2,即x1,故原方程的解是:x11+ ,x21- ;(2)3x(x1)22x,移项得:3x(x1)+2x20,即3x(x1)+2(x1)0,分解因式得:(x1)(3x+2)0,即3x+20,x10,解得: ,【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键4、 (1) 线 封 密 内 号学级年名姓 线 封 密 外 (2)x(3

20、)x17,x28【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1.所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(x7)0,(x7)(x8)0.x70,或x80.x17,x28.【点睛】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验

21、分时方程的根5、 (1)-1;(2) (0,3)与(2,3).【解析】【分析】(1)根据抛物线的顶点的纵坐标是2,可以求得m的值;(2)根据当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,可以求得这两个定点的坐标【详解】解:(1)ymx22mx3m(x1)2m3,抛物线的顶点的纵坐标是2,m32,解得m1,即m的值是1; 线 封 密 内 号学级年名姓 线 封 密 外 (2)当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m1时,yx22x3;当m2时,y2x24x3,x22x32x24x3.x22x0.x10,x22.这两个定点为(0,3)与(2,3).【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想和二次函数的性质解答

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1