收藏 分享(赏)

2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx

上传人:a**** 文档编号:711775 上传时间:2025-12-13 格式:DOCX 页数:25 大小:460.67KB
下载 相关 举报
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第1页
第1页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第2页
第2页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第3页
第3页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第4页
第4页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第5页
第5页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第6页
第6页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第7页
第7页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第8页
第8页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第9页
第9页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第10页
第10页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第11页
第11页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第12页
第12页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第13页
第13页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第14页
第14页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第15页
第15页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第16页
第16页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第17页
第17页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第18页
第18页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第19页
第19页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第20页
第20页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第21页
第21页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第22页
第22页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第23页
第23页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第24页
第24页 / 共25页
2022年解析卷人教版九年级数学上册期中模拟考考卷(Ⅲ)(含详解).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考考卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列方程:;是一元二次方程的是()ABCD2、若m,n是方程x2x2 0

2、220的两个根,则代数式(m22m2 022)(n22n2 022)的值为()A2 023B2 022C2 021D2 0203、已知二次函数yax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y24、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD5、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形

3、边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A3B4C4.8D5二、多选题(5小题,每小题4分,共计20分)1、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1B设=+2,=+2,则当时,有 线 封 密 内 号学级年名姓 线 封 密 外 C它的图象与x轴的两个交点是(0,0)和(2,0)D当0x2时,y02、如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为1,3,则下列结论中正确的有()Aac0B2a+b=0C4a+2b+c0D对于任意x均有ax2+bxa+b3、对于抛物线y2(x3)21,下列说法错误的是()A开口向

4、上B对称轴是直线x3C当x3时,y随x的增大而减小D当x3时,函数值有最小值是14、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+b=0C3a+2c0D对于任意x均有ax2a+bxb05、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A若x2=4,则x=2B若3x2=6,则x=2Cx2 + x-k=0的一个根是1,则k=2D若分式的值为零,则x=2第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、抛物线的开口方向向_2、设分别为一元二次方程的两个实数根,则_3、

5、关于x的方程x2x10的两根分别为x1、x2则x1+x2x1x2的值为 _4、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.5、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)四、解答题(5小题,每小题8分,共计40分)1、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由; 线 封 密 内 号学级年名姓 线 封 密 外 (2)将绕点顺

6、时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由2、已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=|x22x3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围3、用适当的方法解下列方程:(1)(2)4、陕西某景区吸引了大量中外游客前来参观,如果

7、游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?5、如图,在矩形ABCD中,AB12 cm,BC6 cm点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动如果点P,Q同时出发,用t(s)表示移动的时间(0t6),那么当t为何值时,QAP的面积等于8 cm2?-参考答案-一、单

8、选题1、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程; 线 封 密 内 号学级年名姓 线 封 密 外 该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是22、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=

9、2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)(-2022+n+2022)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键3、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行

10、判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小,抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2), 线 封 密 内 号学级年名姓 线 封 密 外 5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次

11、函数图象与系数的关系,准确计算是解题的关键4、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=BF=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点

12、问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键5、D【解析】【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可【详解】解:由图可得出,整理,得,解得,(不合题意,舍去)故选:D【考点】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键二、多选题1、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减性即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】二次函数y=+2x,x=1,故A正确;=+2,=+2,(,),(,)都是二次

13、函数y=+2x图像上的点,对称轴为x=1,a=-10,当1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的图象与x轴的两个交点是(0,0)和(2,0),故C正确;二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键2、ABD【解析】【分析】根据二次函数的图象和性质进行分析即可注意抛物线的开口方向以及对称性【详解】解:抛物线开口向上,抛物线与y轴的交点在y轴的负半轴,故A正确;二次函数y=ax2+bx+

14、c的图象与x轴的交点的横坐标分别为1,3,抛物线的对称轴, ,故B正确;当时,故C错误;由于抛物线的对称轴为直线,当时,函数取最小值,故D正确故选:ABD【点睛】本题考查了二次函数的图象与系数之间的关系,熟练运用抛物线的对称轴注意函数的最小值是解题的关键3、CD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据抛物线的性质由得到图像开口向上,根据顶点式得到顶点坐标为,对称轴为直线,当时,随增大而增大【详解】解:由抛物线y2(x3)21得抛物线开口向上,故A正确,不符合题意;由抛物线顶点式可知顶点坐标为,对称轴为直线,故B正确,不符合题意;由抛物线对称轴以及开口方向可知,当时,

15、随增大而增大,故C错误,符合题意;当当x3时,函数值有最小值是1,故D错误,符合题意;故答案为:CD【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握抛物线顶点式的性质4、BD【解析】【分析】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【

16、详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+2a+c=0,c=-3a,3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值最小,对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【点睛】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用

17、两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解5、CD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 对于一元二次方程x2=4和3x2=6x分别解答即可求得x的值,从而判断是否正确;对于方程x2+x-k=0求k的值,可以将x=1代入原方程即可求得k的值;若原分式为0,则分母不能为0,即分子为0,所以x=2,当x=2时,分母也为0,所以原分式不能为0【详解】解:A、若x2=4,解得:x=2或-2,故本选项错误;B、若3x2=6x,则3x2-6x=0,即3x(x-2)=0,解得:x=0或2,故本选项错误;C、将

18、x=1代入原方程可得:k=2,故本选项正确;D、若分式的值为零,则x(x-2)=0且x0,解得x=2;故本选项正确;故选CD三、填空题1、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】,抛物线开口向下;故答案是下【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键2、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m22m2022,mn2,将其代入m23mnm22m(mn)中即可求出结论【详解】解:m,n分别为一元二次方程x22x20220的两个实数根,m22m2022,mn2,m23mnm22m(mn)2022(2)2020故答案为:2

19、020【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m22m2022,mn2是解题的关键3、2【解析】【分析】先根据根与系数的关系得到,然后利用整体代入的方法计算即可【详解】解:关于x的方程x2x10的两根分别为x1、x2,x1+x2x1x2=1-(-1)=2故答案为:2【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了根与系数的关系:若为一元二次方程的两个根,则有,熟记知识点是解题的关键4、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口

20、向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.5、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2

21、=2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系四、解答题1、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1), 线 封 密 内 号学级年名姓 线 封 密 外 由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形,又,即【

22、点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质2、 (1)d=;(2)d=或d=(3)d或d; (4)d。【解析】【分析】(1)令x22x3=xd求解即可;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0),则根据方程有两个相等的实根 线 封 密 内 号学级年名姓 线 封 密 外 求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(3,0)时,d=;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0), 直线l:y

23、=xd与抛物线c:y=x22x3(3x1)相切于点P,则点P的横坐标恰好是方程xd=x22x3,即2x23x2d6=0(3x1)的两个相等实数根,解=98(2d6)=0得d=,点P的坐标为().当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=; 综合、得:d=或d=(3)由平移直线l可得:直线l从经过点A(3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得d 直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d;综合、

24、得:d或d; (4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;要使直线l与这个新图象有四个公共点则d的取值范围是d.【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系3、(1),;(2),【解析】【分析】(1)根据因式分解法求解一元二次方程的性质计算,通过计算即可得到答案;(2)根据公式法求解一元二次方程的性质计算,即可得到答案【详解】(1) ,;(2),【点睛】本题考查了一元二

25、次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解4、10万人、300元【解析】【分析】设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【点睛】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键5、当t为2或4时,QAP的面积等于8 cm2【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 当运动时间为t s时,AP2t cm,AQ(6t)cm,利用三角形的面积计算公式,结合QAP的面积等于8cm2,即可得出关于t的一元二次方程,解之即可得出t的值【详解】解:当运动时间为t s时,AP2t cm,AQ(6t)cm,依题意得2t(6t)8,整理得t26t80,解得t12,t24,当t为2或4时,QAP的面积等于8 cm2【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1