1(2012济南高二检测)设等比数列an的公比q2,前n项和为Sn,则()A2B4C. D.解析:S415a1,a2a1q2a1,.答案:C2设an是公比为正数的等比数列,若a11,a516,则数列an前7项的和为()A63 B64C127 D128解析:a11,a516,q416.又q0,q2.S7271127.答案:C3已知等比数列的公比为2,且前5项和为1,那么前10项和等于()A31 B33C35 D37解析:q2,S51.而S10S5(1q5)1(132)33答案:B4若数列an满足a11,an12an,n1,2,3,则a1a2an_.解析:an12an, q2.又a11,Sn2n1.答案:2n15已知数列an的前n项和为Sn,且Sn()na,若an为等比数列,则a_.解析:SnSn1()na()n1a()n()n1()n2()n()n,n2时,当n1时,a1S1a.又an为等比数列,q.a1a.即a1.答案:16在等比数列an中,(1)S230,S3155,求Sn;(2)a12,S36,求a3和q.解:(1)由题意知解得或从而Sn5n1或Sn.(2)由题意,得若q1,则S33a16,符合题意此时,q1,a3a12.若q1,则由等比数列的前n项和公式,得S36,解得q2.此时,a3a1q22(2)28.综上所述,q1,a32或q2,a38.