1、京改版八年级数学上册期末测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法:数轴上的任意一点都表示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,
2、则积为负数,其中正确的有()A个B个C个D个2、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是()A0B1C2D33、一直角三角形的三边分别为2、3、x,那么x为()ABC或D无法确定4、若,则的值为()ABCD5、若有意义,则(n)2的平方根是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列作图语句不正确的是()A作射线AB,使AB=aB作AOB=aC延长直线AB到点C,使AC=BCD以点O为圆心作弧2、下列计算不正确的是()A(1)01BCD用科学记数法表示0.00001081.081053、下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交
3、通标志图(黑白阴影图片)中不是轴对称图形的是()ABCD4、下列计算中,正确的有()A(3xy2)39x3y6B(2x3)24x6C(a2m)3a6mD2a2a12a5、下列实数中无理数有()AB0CDEFGH0.020020002第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、式子有意义的条件是_2、如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是_3、的相反数是_,的绝对值是_,_4、若一个分数的分子、分母同时加1,得;若分子、分母同时减2,则得,这个分数是_5、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_四、解
4、答题(5小题,每小题8分,共计40分)1、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点2、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的度数;(3)如图,若和的角平分线交于点E,求出的度数3、计算(1);(2)4、把下列各式填入相应的括号内:2a,整式集合:;分式集合:5、实数a在数轴上的对应点A的位置如图所示,b|a|2a|(1)求b的值;(2)已知b2的小数部分是m,8b的小数部分是n,求2m2n1的平方根-参考答案-一、单选题1、C【解析】【分析】数轴上的点可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是
5、常数项,所以错误;根据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,故错误;根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键2、D【解析】【分析】直接利用数轴结合点位置进而得出答案【详解】解:数轴的单位长度为1,如果点表示的数是-1,点表示的数是:3故选D【考点】此题主要考查了实数轴,正确应用数形结合分析是解题关键3、C【解析】【分析】分类讨论当3为斜边时和x为斜边时,利用勾股定理列出等式即可解题.【
6、详解】解:当3为斜边时,32=22+x2,解得:x=,当x为斜边时,x2=32+22,解得:x=,x为或,故选C.【考点】本题考查了勾股定理的实际应用,中等难度,分类讨论是解题关键.4、C【解析】【分析】先计算,的算术平方根,并进行化简即可【详解】解:, 故选C【考点】本题考查了算术平方根和数字的变化类规律问题,分别计算出,的算术平方根是解本题的关键5、D【解析】【详解】试题解析:有意义, 解得: 的平方根是: 故选D二、多选题1、ACD【解析】【分析】根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;【详解】解
7、:A、射线是不可度量的,故本选项错误;B、AOB=,故本选项正确;C、直线向两方无限延伸没有延长线,故本选项错误;D、需要说明半径的长,故选项错误故选:ACD【考点】本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质2、ABCD【解析】【分析】根据负整数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则3、ACD【解析】【分析】根据轴对
8、称图形的概念对各选项分析判断即可得出答案轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项符合题意故选:ACD【考点】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合4、BD【解析】【分析】根据幂的运算即可依次判断【详解】A.(3xy2)327x3y6,故错误;B.(2x3)24x6,正确;C.(a2m)3-a6m,故
9、错误;D. 2a2a12a,正确;故选BD【考点】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则及负指数幂的特点5、EGH【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可求解【详解】解:,0,是有理数;,0.020020002,是无理数,故选:EGH【考点】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键三、填空题1、且【解析】【分析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x-30,解得:,故答案为且.【考点】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解
10、不等式是解决本题的关键.2、15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明ABDCED,所以CE=AB,再利用勾股定理的逆定理证明CDE是直角三角形,即ABD为直角三角形,进而可求出ABD的面积【详解】解:延长AD到点E,使DE=AD=6,连接CE,AD是BC边上的中线,BD=CD,在ABD和CED中,ABDCED(SAS),CE=AB=5,BAD=E,AE=2AD=12,CE=5,AC=13,CE2+AE2=AC2,E=90,BAD=90,即ABD为直角三角形,ABD的面积=ADAB=15故答案为15【考点】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解
11、题的关键是添加辅助线,构造全等三角形3、 - 3【解析】【分析】直接利用相反数以及绝对值、算术平方根的性质分别化简得出答案【详解】解:的相反数是:-,-的绝对值是:,=3故答案为:-,3【考点】此题主要考查了算术平方根、实数的性质,正确掌握相关定义是解题关键4、【解析】【分析】设这个分数为,根据已知条件列两个方程,再这两解方程即可求解.【详解】解:设这个分数为,依题意得,解之得:,经检验,是的所列方程的解且符合题意,故答案为:.【考点】本题主要考查了用方程解决问题,找出题中的等量关系是关键5、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾
12、股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键四、解答题1、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.2、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分线得出,结合三角形内角和定理即可得出结果(1)解:四边形的内角和是360,(2),CE平分(3)BE,CE分别平分和,在中,【考点】题
13、目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键3、(1) ;(2)【解析】【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解【详解】解:(1)原式;(2)原式【考点】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键4、整式集合: 2a,;分式集合: ,【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】2a,的分母没有字母是整式,式子的分母含有字母是分式故答案为:整式集合: 2a,;分式集合: ,【考点】本题考查了整式和分式的定义,熟练掌握相关概念是解题关键,注意:不是字母,是常数5、 (1)(2)【解析】【分析】(1)先判断2a3,再判断a-0,2a0,再化简绝对值,合并即可;(2)先求解 再求解的值,再求解2m2n1,最后求解平方根即可(1)解:2a3a-0,2a0b-aa-22(2)b2=,8b=8(2)=10, m=3,n=106=42m2n1=26+821=32m2n1的平方根为【考点】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键