1、京改版八年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列二次根式中,与同类二次根式的是()ABCD2、已知 ,则 的值是()ABC2D-23、计算下列各式,值最小的是()
2、ABCD4、若分式在实数范围内有意义,则x的取值范围是()Ax5Bx0Cx5Dx55、计算的结果是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列运算正确的是()A = 5B = 1C = 3D= 62、下列运算中,正确的是()ABCD3、下列各式中能与合并的是()ABCD4、如果解关于x的分式方程时出现增根,则m的值可能为()ABCD15、以下各式不是最简二次根式的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算:(1)_;(2)_2、与 最接近的自然数是 _3、若代数式在实数范围内有意义,则x的取值范围是_4、计算的结果是_5、观察
3、下面的变化规律:,根据上面的规律计算:_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)(2)2、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?3、求下列各式的值:(1);(2)4、已知关于x的方程有增根,求m的值5、化简:(1);(2);(3);(4)-参考答案-一、单选题1、B【解析】【分析】将每个选项化简成最简二次根式,再根据同类二次根式的定义逐一判断即可【详解】解:A.,与不是同类二次根式;B.,与是同类二次根式;C.与不是同类二次根式;D.与不是同类二次根式;故选:B【考点】本题考查同类二次根
4、式,利用二次根式的性质将每个选项化简成最简二次根式是解题的关键2、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键3、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.; B.;C.; D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键.4、A【解析】【分析】根据分式有意义的条件列不等式求解【详解】解:根据分式有意义的条件,可得:,故选:A【考点】本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解
5、题关键5、A【解析】【详解】原式故选A.二、多选题1、ACD【解析】【分析】分别根据二次根式的性质化简、二次根式的加减法则、二次根式的除法和乘法法则逐项判断即得答案【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、,故本选项符合题意故选ACD【考点】本题考查了二次根式的运算和利用二次根式的性质化简,属于基础题型,熟练掌握二次根式的运算法则是解题的关键2、CD【解析】【分析】根据合并同类项,完全平方公式,分式的乘除及分式的加减运算进行计算,再判断即可作答【详解】不能再合并同类项了,A选项错误,不符合题意;,B选项错误,不符合题意;,C选项正确,符合题意;,
6、D选项正确,符合题意;故选:CD【考点】本题考查了合并同类项,完全平方公式,分式的乘除及分式的加减运算,熟练掌握运算法则是解题的关键3、BC【解析】【分析】先化简各二次根式,再根据同类二次根式的概念逐一判断即可得【详解】A选项:,不能与合并,不符合题意;B选项:,能与合并,符合题意;C选项:,能与合并,符合题意;D选项:,不能与合并,不符合题意;故选:BC【考点】考查了同类二次根式,解题关键是掌握把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式4、AB【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m
7、的值【详解】解:分式方程,去分母整理,得,;原分式方程有增根,则或,或;故选:AB【考点】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值5、ABC【解析】【分析】根据最简二次根式的定义逐个判断即可【详解】解:A、,不是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项符合题意;C、,不是最简二次根式,故本选项符合题意;D、,是最简二次根式,故本选项不符合题意;故选ABC【考点】本题主要考查了最简二次根式的定义,最简二次根式的条件:(1)被开方数的因数是整数或整式;(2)被开方数中不含有可化为平方数或平方式的因数或
8、因式三、填空题1、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式2、2【解析】【分析】先根据得到,进而得到,因为14更接近16,所以最接近的自然数是2【详解】解:,可得,14接近16,更靠近4,故最接近的自然数是2故答案为:2【考点】本题考查无理数的估算,找到无理数相邻的两个整数是解题的关键3、x3【解析】【分析】本题考查
9、二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可【详解】因为二次根式有意义必须满足被开方数为非负数所以有又因为分式分母不为零所以故综上: 则:故答案为:x3【考点】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱4、【解析】【详解】解:原式=36=32=故答案为5、【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题【详解】由题干信息可抽象出一般规律:(均为奇数,且)故故答案:【考点】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解四、解答题1、 (1)(2)【解析】【分析】
10、(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算2、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.3、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然
11、后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键4、m3或5时【解析】【分析】根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,那么最简公分母x(x1)0,所以增根是x0或1,把增根代入化为整式方程的方程即可求出m的值【详解】解:方程两边都乘x(x1),得3(x1)6xxm,原方程有增根,最简公分母x(x1)0,解得x0或1,当x0时,m3;当x1时,m5.故当m3或5时,原方程有增根【考点】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5、(1)27;(2);(3);(4)【解析】【分析】根据积与商的算术平方根的性质将原式化为最简二次根式即可【详解】解:(1);(2);(3);(4)【考点】本题主要考查了最简二次根式,熟知定义以及二次根式的性质是解题的关键