1、北师大版七年级数学上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法正确的是()A的系数是3B的次数是3C的各项分别为2a,b,1D多项式是二次三项式2、3的相反数为()A3
2、BCD33、多项式与多项式相加后,不含二次项,则常数m的值是()A2BCD4、下图中,不可能围成正方体的是()ABCD5、如图所示,正方体的展开图为()A B C D 二、多选题(5小题,每小题4分,共计20分)1、下列各式由等号左边变到右边变错的有()Aa(bc)=abcB(x2+y)2(xy2)=x2+y2x+y2C(a+b)(x+y)=a+b+xyD3(xy)+(ab)=3x+3y+ab2、下列整式的加减,结果是多项式的是()A(3k2+4k1)(3k24k+1)B2(p3+p21)2(p3+p1)C(1+3m2n+3m3)(1m2nm3)Da2(5a2+6a)2(3a2+3a)3、下列
3、说法中正确的是()A一个非零有理数与它的倒数之积为1B一个非零有理数与它的相反数之商为-1C两数商为-1,则这两个数互为相反数D两数积为1,则这两个数互为相反数4、下列各式不符合书写要求的是()ABn2CabD2r25、下列图形中,属于立体图形的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、东京与北京的时差为,伯伯在北京乘坐早晨的航班飞行约到达东京,那么李伯伯到达东京的时间是_(注:正数表示同一时刻比北京时间早的时数)2、如将看成一个整体,则化简多项式_3、已知整数a1,a2,a3,a4,满足下列条件:a10,a2|a1+1|,a3|a2+2|,a4|a
4、3+3|,依此类推,则a2019的值为_4、多项式是按照字母x的_排列的,多项式是按照字母_的_排列的5、在,0,1,1这四个数中,最小的数是_四、解答题(5小题,每小题8分,共计40分)1、一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下表所示(单位:如)第一次第二次第三次第四次x(1)填空;这辆出租车第三次行驶的方向是_、第四次行驶方向是_;(2)求经过连续4次行驶后,这辆出租车所在的位置2、阅读材料,探究规律,完成下列问题甲同学说:“我定义了一种新的运算,叫*(加乘)运算“然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:;乙同学看了这些算
5、式后说:“我知道你定义的*(加乘)运算的运算法则了”聪明的你也明白了吗?(1)请你根据甲同学定义的*(加乘)运算的运算法则,计算下列式子:_;_;_请你尝试归纳甲同学定义的*(加乘)运算的运算法则:两数进行*(加乘)运算时,_特别地,0和任何数进行*(加乘)运算, _(2)我们知道有理数的加法满足交换律和结合律,这两种运算律在甲同学定义的*(加乘)运算中还适用吗?请你任选一个运算律,判断它在*(加乘)运算中是否适用,并举例验证(举一个例子即可)3、下列图形是用五角星摆成的,如果按照此规律继续摆下去:(1)第4个图形需要用 个五角星;第5个图形需要用 个五角星;(2)第n个图形需要用 个五角星;
6、(3)用6064个五角星摆出的图案应该是第 个图形;(4)现有1059个五角星,能否摆成符合以上规律的图形(1059个五角星要求全部用上),请说明理由4、把下列各数在数轴上表示出来,并比较各数大小,用“”连接5、如图,已知线段(为常数),点C为直线AB上一点(不与A、B重合),点P、 Q分别在线段BC、AC上,且满足,(1)如图1,点C在线段AB上,求PQ的长;(用含m的代数式表示)(2)如图2,若点C在点A左侧,同时点在线段AB上(不与端点重合),求的值-参考答案-一、单选题1、A【解析】【分析】根据单项式的次数、系数以及多项式的系数、次数的定义解决此题【详解】解:A根据单项式的系数为数字因
7、数,那么3ab2的系数为3,故A符合题意B根据单项式的次数为所有字母的指数的和,那么4a3b的次数为4,故B不符合题意C根据多项式的定义,2a+b1的各项分别为2a、b、1,故C不符合题意Dx21包括x2、1这两项,次数分别为2、0,那么x21为二次两项式,故D不符合题意故选:A【考点】本题主要考查单项式的系数,次数的定义以及多项式的项、项数以及次数的定义,熟练掌握单项式的系数,次数的定义以及多项式的项、项数以及次数的定义是解决本题的关键2、A【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可【详解】解:3的相反数是3故选:A【考点】此题考查求一个数的相反数,解题关键在于
8、掌握相反数的概念3、B【解析】【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二次项时,有,解得故选B【考点】本题主要考查了合并同类项的应用,准确计算是解题的关键4、D【解析】【分析】根据题意利用折叠的方法,逐一判断四个选项是否能折成正方体即可【详解】根据题意,利用折叠的方法,A可以折成正方体,B也可以折成正方体,C也可以折成正方体,D有重合的面,不能直接折成正方体故选D【考点】本题考查了正方体表面展开图的应用问题,是基础题5、A【解析】【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不
9、正确;D中三个符号的方位不相符,故不正确;故答案选A【考点】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键二、多选题1、ABC【解析】【分析】根据整式的加减计算法则进行逐一判断即可得到答案【详解】解:A. a(bc)=ab+c,故此选项符合题意;B. (x2+y)2(xy2)=x2+y2x+2y2,故此选项符合题意;C. (a+b)(x+y)=a-b+xy,故此选项符合题意;D. 3(xy)+(ab)=3x+3y+ab,故此选项不符合题意;故选ABC【考点】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则2、ABD【解析】【分析】将每个选项中的式子先去括号,
10、再合并同类项化为最简,然后判断即可【详解】解:A、原式,结果是多项式,故此项正确;B、原式,结果是多项式,故此项正确;C、原式,结果是单项式,故此项不正确;D、原式,结果是多项式,故此项正确故选:ABD【考点】考查了整式的加减,单项式,整式的加减的实质就是去括号、合并同类项一般步骤是:先去括号,然后合并同类项3、ABC【解析】【分析】根据倒数和相反数的定义:如果两个数的积为1,那么这两个数互为倒数,如果两个数只有符号不同,数字相同,那么这两个数互为相反数(0的相反数是0),进行逐一判断即可【详解】解:A一个非零有理数与它的倒数之积为1,故此选项符合题意;B一个非零有理数与它的相反数之商为-1,
11、故此选项符合题意;C两个数的商为1,这两个数互为相反数,故此选项符合题意;D两个数的积为1,这两个数互为倒数,故此选项不符合题意故选ABC【考点】本题主要考查了相反数和倒数的定义,解题的关键在于能够熟练掌握相关知识进行求解4、ABC【解析】【分析】根据代数式的书写规则,逐一判断各项,即可【详解】解:A. 应改为,故该选项不符合书写要求;B. n2应改为,故该选项不符合书写要求;C. ab应改为,故该选项不符合书写要求;D. 2r2,故该选项符合书写要求,故选ABC【考点】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“”或者省略不写;(2)数字与字母相乘时,数字要写
12、在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写带分数要写成假分数的形式5、ACD【解析】【分析】根据立体图形的定义:是各部分不都在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形,进行逐一判断即可【详解】解:A、是立体图形,符合题意;B、不是立体图形,不符合题意;C、是立体图形,符合题意;D、是立体图形,符合题意;故选ACD【考点】本题主要考查了立体图形的定义,解题的关键在于能够熟练掌握立体图形的定义三、填空题1、时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间【详解】由题意得,李伯伯到达东京是下午时故答案是
13、:13时【考点】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则2、【解析】【分析】把xy看作整体,根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,计算即可【详解】(xy)5(xy)4(xy)3(xy)=(14)(xy)+(5+3)(xy)=3(xy)2(xy)故答案为:3(xy)2(xy)【考点】本题考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变,是基础知识比较简单3、-1009【解析】【分析】根据条件求出前几个数的值,再分n是奇数时,结果等于- ;n是偶数时,结果等于-;然后把n的值代入进行计算即可得解【详解】a1=0,a2=-|a1+1|=-
14、|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,所以n是奇数时,结果等于-;n是偶数时,结果等于-;a2019=-=-1009故答案为:-1009【考点】考查了数字的变化规律,解题关键是根据所求出的数,观察出n为奇数与偶数时的结果的变化规律4、 升幂 a 降幂【解析】【分析】观察可知x的指数逐渐增大,观察可知字母a的指数逐渐减小,由此即可求得答案.【详解】多项式是按照字母x的升幂排列的,多项式是按照字母a的降幂排列的,故答案为升幂;a,降幂.【考点】本题考查了多项式的排列,正确进行观察是解题的
15、关键.5、1【解析】【分析】根据有理数比较大小的方法比较即可【详解】解:|1|, 1101,故答案为:1【考点】本题考查了有理数大小比较,负数比较大小,绝对值大的数反而小四、解答题1、(1)东,西;(2)向东()km处【解析】【分析】(1)以A为原点,根据数的符号即可判断车的行驶方向;(2)将四次行驶路程(包括方向)相加,根据判断出租车的位置【详解】解:(1),x-40,16-2x0,第三次是向东,第四次是向西,故答案为:东,西;(2)x+=,0,经过连续4次行驶后,这辆出租车所在的位置是向东()km处【考点】本题考查了整式的加减,主要考查学生分析问题和解决问题的能力,用数学解决实际问题,题型
16、较好2、 (1) 同号得正,异号得负,并把绝对值相加 等于这个数的绝对值(2)加乘运算满足交换律,不满足结合律,举例见解析.【解析】【分析】(1)根据题干提供的运算特例的运算特点分别进行计算,再归纳可得:加乘运算的运算法则;(2)对于加乘运算的交换律, 可举例进行运算后再判断,对于加乘运算的结合律,可举例 进行运算后再判断即可.(1)解:根据加乘运算的运算法则可得:;归纳可得:两数进行*(加乘)运算时,同号得正,异号得负,并把绝对值相加特别地,0和任何数进行*(加乘)运算,等于这个数的绝对值(2)解:加法的交换律仍然适用, 例如:所以故加法的交换律仍然适用 加法的结合律不适用, 例如: 所以故
17、加法的结合律不适用【考点】本题考查的是新定义运算,同时考查的是有理数的加法运算,绝对值的含义,理解新定义,归纳总结运算法则是解本题的关键.3、(1)13,16;(2)(3n+1);(3)2021;(4)不能,见解析【解析】【分析】(1)不难看出后一个图形比前一个图形多3个五角星,据此进行求解即可;(2)结合(1)进行分析即可得出结果;(3)(4)利用(2)中的结论进行求解即可【详解】解:(1)由题意得:第1个图形需要用五角星的个数为:4,第2个图形需要用五角星的个数为:7=4+3=4+31,第3个图形需要用五角星的个数为:10=4+3+3=4+32,第4个图形需要用五角星的个数为:13=4+3
18、+3+3=4+33,第5个图形需要用五角星的个数为:16=4+3+3+3+3=4+34,故答案为:13,16;(2)由(1)得:第n个图形需要用五角星的个数为:4+3(n-1)=3n+1,故答案为:(3n+1);(3)由题意得:3n+1=6064,解得:n=2021,故答案为:2021;(4)不能,理由如下:由题意得:3n+1=1059,解得:n=,不是整数,1059个五角星不能摆成符合以上规律的图形【考点】本题主要考查了图形的变化规律,解答的关键是由所求的图形总结出所存在的规律4、;数轴见解析【解析】【分析】先把各个数化简,再在数轴上描出各点,最后根据数轴上右边的数大于左边的数即可得到结果【详解】解:在数轴上表示,如图所示:根据数轴上右边的数总比左边的大可得:【考点】此题主要考查了利用数轴比较实数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想5、(1);(2)【解析】【分析】(1)根据已知为常数),以及线段的中点的定义解答;(2)根据题意,画出图形,求得,即可得出与1的大小关系【详解】解:(1),点恰好在线段中点,为常数),;(2)如图示:,【考点】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键