1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果为16,则m的值等于()A7B6C5D42、如图,一束太阳
2、光线平行照射在放置于地面的正六边形上,若,则的度数为( )ABCD3、下列多边形中,内角和最大的是()ABCD4、下列电视台标志中是轴对称图形的是()ABCD5、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列图形中轴对称图形有()A角B两相交直线C圆D正方形2、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边;C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三
3、角形都和第三个三角形不全等,那么这两个三角形也一定不全等; 线 封 密 内 号学级年名姓 线 封 密 外 3、下列关于的方程,不是分式方程的是()ABCD4、下列图形中,是轴对称图形的是()ABCD5、下列式子是分式的有()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,若ABCA1B1C1,且A110,B40,则C1_2、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之
4、停止运动当v为_时,ABP与PCQ全等3、计算_4、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_5、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_(2)已知的周长为24,于点D,若的周长为20,则AD的长为_(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请
5、说明理由2、如图,在直角坐标系中,的三个顶点坐标分别为,请回答下列问题: 线 封 密 内 号学级年名姓 线 封 密 外 (1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为 3、如图,在ABC中,ABAC,D,E是BC边上的点,连接AD,AE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD(1)求证:ABDACD(2)若BAC100,求DAE的度数4、如图,在中,点D,E分别在边AB,AC上,连结CD,BE(1)若,求,的度数(2)写出与之间的关系,并说明理由5、某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地
6、距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达已知乙车的平均速度是甲车的平均速度的1.2倍,求甲车的平均速度-参考答案-一、单选题1、A【解析】【分析】根据幂的运算公式即可求解【详解】=16=24则2m-3-m=4解得m=7故选A【考点】此题主要考查幂的运算及应用,解题的关键是熟知幂的运算法则2、A【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解【详解】解:正六边形的每个内角等于120,每个外角等于60,FAD=120-1=101,ADB=60,ABD=101-60=41
7、光线是平行的,=ABD=,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键3、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键4、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详
8、解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键5、C【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质二、多选题1、ABCD【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:角;
9、两相交直线;圆;正方形都是轴对称图形故选:ABCD【考点】本题主要考查了轴对称图形的定义,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆2、ABD【解析】【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三
10、个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理3、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC 线
11、封 密 内 号学级年名姓 线 封 密 外 【考点】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)4、ACD【解析】【分析】根据轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可【详解】解:A、是轴对称图形,此项正确;B、不是轴对称图形,此项错误;C、是轴对称图形,此项正确;D、是轴对称图形,此项正确.故选ACD【考点】本题考查了轴对称图形的概念,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合.5、CD【解
12、析】【分析】根据分式定义:如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子叫做分式,其中A称为分子,B称为分母,据此判断即可【详解】解:A、分母中没有字母,不是分式,不符合题意;B、分母中没有字母,不是分式,不符合题意;C、,是分式,符合题意;D、,是分式,符合题意;故选:CD【考点】本题考查了分式的定义,熟知分式的概念是解本题的关键三、填空题1、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性
13、质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来 线 封 密 内 号学级年名姓 线 封 密 外 2、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP1284(cm),2t4,解得:t2,CQBP4cm,v24,解得:v2;当BACQ,PBPC时,ABPQCP,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38,解得:v,综上所述,当v2或时,A
14、BP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键3、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则4、或【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点
15、M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或故答案为:或【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏5、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】
16、(1)如图, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 线 封 密 内 号学级年名姓 线 封 密 外 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三角形的周长定义、三角形的三边关系是解题的关键四、解答题1、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3
17、)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键2、(1)图见解析,;(2)【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标(2)如图利用割补法即可求出的面积【详解】(1)如图,即为所求,由图可知,(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、G、F,由图可
18、知四边形EGF为正方形所以,即故答案为:【考点】本题考查利用轴对称作图,利用轴对称的性质找出对称点的位置是解决问题的关键3、(1)见解析;(2)【解析】【分析】(1)由对称得到,再证明 即可;(2)由全等三角形的性质,得到,BAC=100,最后根据对称图形的性质解题即可【详解】解:(1)以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,在ABD与中, 线 封 密 内 号学级年名姓 线 封 密 外 (2) ,BAC=100,以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,DAE【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键4
19、、(1);(2),见解析【解析】【分析】(1)利用三角形的内角和定理求出的大小,再利用等腰三角形的性质分别求出,(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含分别表示,即可得到两角的关系【详解】(1),在中,(2),的关系:理由如下:设,在中,在中,【考点】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形 线 封 密 内 号学级年名姓 线 封 密 外 的性质三角形的内角和等于 三角形的外角等于与其不相邻的两个内角之和等腰三角形等边对等角5、甲车的平均速度是60千米/时【解析】【分析】设甲车的平均速度是千米/时,则乙车的平均速度是千米/时,由题意:此基地距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达,列出分式方程,求解即可【详解】解:设甲车的平均速度是千米/时,则乙车的平均速度是千米/时, 根据题意,得, 解得经检验,是原方程的解, 答:甲车的平均速度是60千米/时【考点】本题考查了分式方程的应用,找到合适的等量关系,正确列出分式方程是解题的关键