1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线O
2、C上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE2、如图,B=D=90,BC=CD,1=40,则2=( )A40B50C60D753、将一副直角三角板ABC和EDF如图放置(其中A=60,F=45),使点E落在AC边上,且ED/BC,则AEF的度数为()A145B155C165D1704、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就
3、是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA5、如图,在中,连接BC,CD,则的度数是() 线 封 密 内 号学级年名姓 线 封 密 外 A45B50C55D80二、多选题(5小题,每小题4分,共计20分)1、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE2、如图,在AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( )AAODBOCBAPCBPDC点P在AOB的平分线上DCP=DP3、将一个三角形纸片剪开分成两个
4、三角形,这两个三角形可能是()A都是直角三角形B都是钝角三角形C都是锐角三角形D是一个直角三角形和一个钝角三角形4、关于多边形,下列说法中正确的是()A过七边形一个顶点可以作4条对角线B边数越多,多边形的外角和越大C六边形的内角和等于720D多边形的内角中最多有3个锐角5、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有()A线段是的高B与面积相等CD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图所示,过正五边形的顶点作一条射线与其内角的角平分线相交于点,且,则_度2、如图,如图,A+B+C+D+E+F+G=_ 线
5、封 密 内 号学级年名姓 线 封 密 外 3、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_4、如图所示,AD是ABC中BC边上的中线,若AB=2,AC=6,则AD的取值范围是_5、如图,是多边形的三个外角,边CD,AE的延长线交于点F,如果,那么的度数是_.四、解答题(5小题,每小题8分,共计40分)1、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:;(2)若,求的度数2、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上
6、的点,若MACE,ANBD,AM=AN求证:EM=DN3、如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB50,C60,求DAE和BOA的度数4、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点5、如图,在图(1)中,猜想:_度请说明你猜想的理由 线 封 密 内 号学级年名姓 线 封 密 外 如果把图1成为2环三角形,它的内角和为;图2称为2环四边形,它的内角和为则2环四边形的内角和为_度;2环五边形的内角和为_度;2环n边形的内角和为_度-参考答案-一、单选题1、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可
7、得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键2、B【解析】【分析】根据题意易证,则可由2=ACB=90-1,求得2的值【详解】B=D=90,在RtABC和RtADC中,ABCA
8、DC (HL),故选B【考点】本题考查三角形全等的判定和性质判定两个三角形全等,先根据已知条件或求证的结论确定三角 线 封 密 内 号学级年名姓 线 封 密 外 形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件3、C【解析】【分析】根据直角三角形两锐角互余求出1,再根据两直线平行,内错角相等求出2,然后根据CEF=DEF -2计算出CEF,即可求出AEF【详解】解:A=60,F=45,1=90-60=30,DEF=90-45=45,EDBC,2=1=30,CEF=DEF-2=45-30=15,AEF=180-15=165.故选C.【考点】本题考查了平行线的性质,直角三角形两锐角
9、互余的性质是基础题,熟记性质是解题的关键4、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键5、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M, 线 封 密 内 号学级年名姓 线 封 密 外 ,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型二、多选题1、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一
10、个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中2、ABCD【解析】【分析】根据题中条件,由两边夹一角可得AODBOC,得出对应角
11、相等,又由已知得出AC=BD,可得APCBPD,同理连接OP,可证AOPBOP,进而可得出结论【详解】解:OA=OB,OC=OD,AOB为公共角,AODBOC,A=B,又APC=BPD,ACP=BDP,OA-OC=OB-OD,即AC=BD,APCBPD,AP=BP,CP=DP,连接OP, 线 封 密 内 号学级年名姓 线 封 密 外 即可得AOPBOP,得出 AOP= BOP,点P在AOB的平分线上故答案选:ABCD【考点】本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质3、ABD【解析】【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形【详解】
12、解:如图,沿三角形一边上的高剪开即可得到两个直角三角形如图,钝角三角形沿虚线剪开即可得到两个钝角三角形如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形故选:ABD【考点】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图4、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;B、多边
13、形的外角和是固定不变的,选项错误,不符合题意;C、六边形的内角和等于720,选项正确,符合题意;D、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】本题考查了多边形,解决本题的关键是熟记多边形的有关性质5、BCD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】解:CEAD,ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等,选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AF
14、C中,AFEAFC,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE,ACE=CBE+BCE,CAD+ACE=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键三、填空题1、66【解析】【分析】首先根据正五边形的性质得到度,然后根据角平分线的定义得到度,再利用三角形内角和定理得到的度数【详解】解:五边形为正五边形,度,是的角平分线,度,故答案为66【考点】 线 封 密 内 号学级年名姓 线 封 密 外
15、本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理2、【解析】【分析】连接BC、AD根据四边形的内角和定理以及三角形的内角和是180进行分析求解【详解】解:如图,连接BC、AD在四边形BCEG中,得E+G+ECB+GBC=360,又因为1+2=3+4,5+6+F=180,4+5+3+6=CAF+BDF,即1+2+5+6=CAF+BDF,所以CAF+B+C+BDF+E+F+G=540,即A+B+C+D+E+F+G=540故答案为:540【考点】本题考查了四边形内角和定理以及三角形内角和定理,解题的关键是能够巧妙构造四边形,根据四边形的内角和定理以及三角形的内角和定理进行求
16、解3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BA
17、E, 线 封 密 内 号学级年名姓 线 封 密 外 在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质4、2AD4【解析】【分析】此题要倍长中线,再连接,构造全等三角形根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:延长AD到E,使AD=DE,连接BE,AD是ABC的中线,BD=CD,在ADC与EDB中,ADCEDB(SAS),EB=AC,根据三角形的三边关系定理:6-2AE6+2,2AD4
18、,故AD的取值范围为2AD4【考点】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2AE6+2是解此题的关键5、45【解析】【分析】利用多边形的外角和为360以及三角形内角和为180,然后通过计算即可求解.【详解】解:多边形的外角和为360,1+2+3+DEF+EDF=360,又1+2+3=225, DEF+EDF=135,DEF+EDF+DFE=180,DFE=180-135=45故答案是为45.【考点】本题考查了多边形的外角和和三角形的内角和定理四、解答题1、 (1)见解析;(2)【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(
19、1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键2、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM
20、,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.3、DAE5,BOA120【解析】【分析】由CAB50,C60可求出ABC;由AE、BF是角平分线,得到CBFABF35,EAFEAB25;由AD是高,得到DAC;从而计算得到DAE和BOA【详解】CAB50,C60ABC180506070AE、BF是角平分线 线 封 密 内 号学级年名姓 线 封 密 外 CBFABF35,EAFEAB25又AD是高ADC90DAC18090C30DAEDA
21、CEAF5又ABF35,EAB25BOA180-EAB-ABF180-25-35120DAE5,BOA120【考点】本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解4、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.5、360,见解析;720,1080;【解析】【分析】连接将已知图形补全为闭合四边形,根据三角形的外角性质可得,进而根据四边形的内角和即可求得;同理将2环四边形补全为五边形和三角形,2环五边形补全为六边形和四边形,2环n边形补全为和边形,根据多边形的内角和定理求解即可【详解】解:猜想:360连接,如图,2环四边形中,如图,连接 线 封 密 内 号学级年名姓 线 封 密 外 则2环四边形的内角和同理2环五边形补全为六边形和四边形,则内角和为2环n边形补全为和边形,则内角和为故答案为:360,720,1080;【考点】本题考查了多边形的内角和,三角形的外角性质,将2环n边形补全为和边形是解题的关键